-
Notifications
You must be signed in to change notification settings - Fork 64
/
index.html
227 lines (223 loc) · 8.14 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
<!DOCTYPE html>
<html>
<head>
<!-- <link href="web/projectPage.css" rel="stylesheet" type="text/css"/> -->
<script type="text/javascript" src="js/jquery-1.11.2.min.js"></script>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro:400,700' rel='stylesheet' type='text/css'>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-61302010-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-61302010-1');
</script>
<title>An Interactive Node-Link Visualization of Convolutional Neural Networks</title></head>
<style>
table {
border-collapse: collapse;
}
h1, h2, h3 {
line-height:1.5em;
font-weight:normal;
}
body {
font-family: 'Source Sans Pro', sans-serif;
//font-family: Arial, sans-serif;
font-size: 18px;
background:#fff;
line-height:1.5em;
margin: 0;
}
td,th {
font-size: 18px;
}
code {
font-size: 16px;
}
#container {
width: 100%;
margin: 0 auto;
background-color: #fff;
}
#page {
width: 100%;
//background-color: #fff;
}
#pageContent {
padding:20px 5% 20px 5%;
max-width:960px;
margin:0 auto;
}
a {
color:#06c;
}
.cite {
background:#f0f0f0;
padding:10px;
}
#pdf {
box-shadow: 0px 0px 10px #888888;
width:300px;
height:388px;
margin-right:20px;
}
#pdf:hover {
box-shadow: 0px 0px 10px #069;
}
hr {
margin: 20px 0;
}
table {
width: 100%;
}
table, th, td {
padding: 0;
vertical-align:middle;
color:#000;
}
.projectTitle {
padding-bottom:4px;
}
.projectTitle a {
color: #06c;
}
.project {
background-color:#f9f9f9;
margin-bottom: 40px;
//border: 1px solid #c0c0c0;
border-top: 1px solid #ccc;
border-bottom: 1px solid #ccc;
}
.projects {
}
.projects .image {
width:30%;
background-color:#fff;
//padding-right:10px;
}
.projects .text {
width:70%;
padding: 20px;
}
.hover {
background-color:#eeeeff;
//border: 1px solid #c0c0f9;
border-top: 1px solid #09f;
border-bottom: 1px solid #09f;
}
.feature {
border-top: 1px solid #09f;
border-bottom: 1px solid #09f;
padding: 0 2%;
width: 96%;
background: #f0f6f9;
}
.feature img{
display: block;
margin: 0 auto;
padding-bottom: 1em;
}
</style>
<body>
<div id="container">
<div id="page">
<div id="pageContent">
<h1>An Interactive Node-Link Visualization of Convolutional Neural Networks</h1>
<p><a href="https://adamharley.com/">Adam W. Harley</a></p>
<div class="feature">
<p><strong>Featured in <a href="http://www.popsci.com/gaze-inside-mind-artificial-intelligence">Popular Science</a></strong></p>
<a href="http://www.popsci.com/gaze-inside-mind-artificial-intelligence"><img src="images/popsci_graphic_flat.png" alt="3D neural network visualization" style="width:100%; max-width: 811px"></a>
</div>
<h2>Abstract</h2>
<p>Convolutional neural networks are at the core of state-of-the-art approaches to a variety of computer vision tasks. Visualizations of neural networks typically take the form of static node-link diagrams, which illustrate only the structure of a network, rather than the behavior. Motivated by this observation, this paper presents a new interactive visualization of neural networks trained on handwritten digit recognition, with the intent of showing the actual behavior of the network given user-provided input. The user can interact with the network through a drawing pad, and watch the activation patterns of the network respond in real time.</p>
<h2>Demo</h2>
<div class="projects">
<div class="project">
<table>
<tr>
<td class="image" style="background-color:#000"><a href="./mlp/3d.html"><img src="images/fcnet_480.png" alt="3D neural network visualization" style="width:100%"></a></td>
<td class="text">
<div class="projectTitle"><a href="./mlp/3d.html">3D fully-connected network visualization</a></div>
This network has 784 nodes on the bottom layer (corresponding to pixels), 300 nodes in the first hidden layer, 100 nodes in the second hidden layer, and 10 nodes in the output layer (corresponding to the 10 digits).
</td>
</tr>
</table>
</div>
<div class="project">
<table>
<tr>
<td class="image" style="background-color:#000"><a href="./cnn/3d.html"><img src="images/convnet_480.png" alt="3D neural network visualization" style="width:100%"></a></td>
<td class="text">
<div class="projectTitle"><a href="./cnn/3d.html">3D convolutional network visualization</a></div>
This network has 1024 nodes on the bottom layer (corresponding to pixels), six 5x5 (stride 1) convolutional filters in the first hidden layer, followed by sixteen 5x5 (stride 1) convolutional filters in the second hidden layer, then three fully-connected layers, with 120 nodes in the first, 100 nodes in the second, and 10 nodes in the third. The convolutional layers are each followed by downsampling layer that does 2x2 max pooling (with stride 2).
</td>
</tr>
</table>
</div>
<div class="project">
<table>
<tr>
<td class="image" style="background-color:#000"><a href="./mlp/2d.html"><img src="images/fc_flat_480.png" alt="2D neural network visualization" style="width:100%"></a></td>
<td class="text">
<div class="projectTitle"><a href="./mlp/2d.html">2D fully-connected network visualization</a></div>
This is the same as the first visualization, but with the nodes flattened on a plane so that they are easier to see all at once.
</td>
</tr>
</table>
</div>
<div class="project">
<table>
<tr>
<td class="image" style="background-color:#000"><a href="./cnn/2d.html"><img src="images/convnet_flat_480.png" alt="2D neural network visualization" style="width:100%"></a></td>
<td class="text">
<div class="projectTitle"><a href="./cnn/2d.html">2D convolutional network visualization</a></div>
This is the same as the second visualization, but with the nodes flattened on a plane so that they are easier to see all at once.
</td>
</tr>
</table>
</div>
</div>
<h2>Code and implementation details</h2>
<p>Our source code is freely available on github <a href="https://github.com/aharley/nn_vis">here</a>.</p>
<p>A few details that might be interesting:
<ul>
<li>The neural networks were implemented and trained using a custom MATLAB implementation of neural networks and backpropagation, which I wrote to help myself learn the basics.</li>
<li>The neural networks' training data was an augmented version of MNIST, so as a result, these networks do best when the input drawings are upright and centered.</li>
<li>The math for the visualizations is written in Javascript.</li>
<li>The visualization itself is written in WebGL.</li>
</ul>
<h2>Paper</h2>
<div id="pdf">
<a href="harley_vis_isvc15.pdf"><img src="images/paper_noshadow.png" alt="An Interactive Node-Link Visualization of Convolutional Neural Networks"></a>
</div>
<h2>Citation</h2>
<div class="cite">A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015</div>
<p>Bibtex format:</p>
<div class="cite">
<code>
@inproceedings{harley2015isvc,<br/>
title = {An Interactive Node-Link Visualization of Convolutional Neural Networks},<br/>
author = {Adam W Harley},<br/>
booktitle = {ISVC},<br/>
pages = {867--877},<br/>
year = {2015}<br/>
}
</code>
</div>
</div>
</div>
</div>
<script type="text/javascript">
$(".project" ).hover(
function() {
console.log('hovered!');
$( this ).addClass( "hover" );
}, function() {
$( this ).removeClass( "hover" );
}
);
</script>
</body>
</html>