-
Notifications
You must be signed in to change notification settings - Fork 26
/
evolv1.f
380 lines (379 loc) · 10.9 KB
/
evolv1.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
***
SUBROUTINE evolv1(kw,mass,mt,r,lum,mc,rc,menv,renv,ospin,
& epoch,tm,tphys,tphysf,dtp,z,zpars,vkick)
c-------------------------------------------------------------c
c
c Evolves a single star.
c Mass loss is an option.
c The timestep is not constant but determined by certain criteria.
c Plots the HRD and variables as a function of time.
c
c Written by Jarrod Hurley 26/08/97 at the Institute of
c Astronomy, Cambridge.
c
c-------------------------------------------------------------c
c
c STELLAR TYPES - KW
c
c 0 - deeply or fully convective low mass MS star
c 1 - Main Sequence star
c 2 - Hertzsprung Gap
c 3 - First Giant Branch
c 4 - Core Helium Burning
c 5 - First Asymptotic Giant Branch
c 6 - Second Asymptotic Giant Branch
c 7 - Main Sequence Naked Helium star
c 8 - Hertzsprung Gap Naked Helium star
c 9 - Giant Branch Naked Helium star
c 10 - Helium White Dwarf
c 11 - Carbon/Oxygen White Dwarf
c 12 - Oxygen/Neon White Dwarf
c 13 - Neutron Star
c 14 - Black Hole
c 15 - Massless Supernova
c
c-------------------------------------------------------------c
implicit none
*
integer kw,it,ip,jp,j,kwold,rflag
integer nv
parameter(nv=50000)
*
real*8 mass,z,aj
real*8 epoch,tphys,tphys2,tmold,tbgold
real*8 mt,tm,tn,tphysf,dtp,tsave
real*8 tscls(20),lums(10),GB(10),zpars(20)
real*8 r,lum,mc,teff,rc,menv,renv,vs(3)
real*8 ospin,jspin,djt,djmb,k2,k3,vkick
parameter(k3=0.21d0)
real*8 m0,r1,lum1,mc1,rc1,menv1,renv1,k21
real*8 dt,dtm,dtr,dr,dtdr,dms,dml,mt2,rl
real*8 tol,tiny
parameter(tol=1.0d-10,tiny=1.0d-14)
real*8 ajhold,rm0,eps,alpha2
parameter(eps=1.0d-06,alpha2=0.09d0)
real*8 mlwind,vrotf
external mlwind,vrotf
logical iplot,isave
REAL*8 neta,bwind,hewind,mxns
COMMON /VALUE1/ neta,bwind,hewind,mxns
REAL*8 pts1,pts2,pts3
COMMON /POINTS/ pts1,pts2,pts3
REAL scm(50000,14),spp(20,3)
COMMON /SINGLE/ scm,spp
*
dtm = 0.d0
r = 0.d0
lum = 0.d0
mc = 0.d0
mc1 = 0.d0
rc = 0.d0
rl = 0.d0
if(ospin.le.0.d0)then
ospin = 1.0d-10
jspin = 1.0d-10
endif
k2 = 0.15d0
rflag = 0
*
* Setup variables which control the output (if it is required).
*
ip = 0
jp = 0
tsave = tphys
isave = .true.
iplot = .false.
if(dtp.le.0.d0)then
iplot = .true.
isave = .false.
tsave = tphysf
elseif(dtp.gt.tphysf)then
isave = .false.
tsave = tphysf
endif
*
do 10 , j = 1,nv
*
if(neta.gt.tiny.and.j.gt.1)then
*
* Calculate mass loss from the previous timestep.
*
dt = 1.0d+06*dtm
dms = mlwind(kw,lum,r,mt,mc,rl,z)*dt
if(kw.lt.10)then
dml = mt - mc
if(dml.lt.dms)then
dtm = (dml/dms)*dtm
dms = dml
endif
endif
else
dms = 0.d0
endif
*
* Limit to 1% mass loss.
*
if(dms.gt.0.01d0*mt)then
dtm = 0.01d0*mt*dtm/dms
dms = 0.01d0*mt
endif
*
* Calculate the rate of angular momentum loss due to magnetic braking
* and/or mass loss.
*
if(j.gt.1)then
djt = (2.d0/3.d0)*(dms/(1.0d+06*dtm))*r*r*ospin
if(mt.gt.0.35d0.and.kw.lt.10)then
djmb = 5.83d-16*menv*(r*ospin)**3/mt
djt = djt + djmb
endif
endif
*
* Update mass and time and reset epoch for a MS (and possibly a HG) star.
*
if(dms.gt.0.d0)then
mt = mt - dms
if(kw.le.2.or.kw.eq.7)then
m0 = mass
mc1 = mc
mass = mt
tmold = tm
tbgold = tscls(1)
CALL star(kw,mass,mt,tm,tn,tscls,lums,GB,zpars)
if(kw.eq.2)then
if(GB(9).lt.mc1.or.m0.gt.zpars(3))then
mass = m0
else
epoch = tm + (tscls(1) - tm)*(ajhold-tmold)/
& (tbgold - tmold)
epoch = tphys - epoch
endif
else
epoch = tphys - ajhold*tm/tmold
endif
endif
endif
tphys2 = tphys
tphys = tphys + dtm
*
* Find the landmark luminosities and timescales as well as setting
* the GB parameters.
*
aj = tphys - epoch
CALL star(kw,mass,mt,tm,tn,tscls,lums,GB,zpars)
*
* Find the current radius, luminosity, core mass and stellar type
* given the initial mass, current mass, metallicity and age
*
kwold = kw
CALL hrdiag(mass,aj,mt,tm,tn,tscls,lums,GB,zpars,
& r,lum,kw,mc,rc,menv,renv,k2)
*
* If mass loss has occurred and no type change then check that we
* have indeed limited the radius change to 10%.
*
if(kw.eq.kwold.and.dms.gt.0.d0.and.rflag.ne.0)then
mt2 = mt + dms
dml = dms/dtm
it = 0
20 dr = r - rm0
if(ABS(dr).gt.0.1d0*rm0)then
it = it + 1
if(it.eq.20.and.kw.eq.4) goto 30
if(it.gt.30)then
WRITE(99,*)' DANGER1! ',it,kw,mass,dr,rm0
WRITE(*,*)' STOP: EVOLV1 FATAL ERROR '
CALL exit(0)
STOP
endif
dtdr = dtm/ABS(dr)
dtm = alpha2*MAX(rm0,r)*dtdr
if(it.ge.20) dtm = 0.5d0*dtm
if(dtm.lt.1.0d-07*aj) goto 30
dms = dtm*dml
mt = mt2 - dms
if(kw.le.2.or.kw.eq.7)then
mass = mt
CALL star(kw,mass,mt,tm,tn,tscls,lums,GB,zpars)
if(kw.eq.2)then
if(GB(9).lt.mc1.or.m0.gt.zpars(3))then
mass = m0
else
epoch = tm + (tscls(1) - tm)*(ajhold-tmold)/
& (tbgold - tmold)
epoch = tphys2 - epoch
endif
else
epoch = tphys2 - ajhold*tm/tmold
endif
endif
tphys = tphys2 + dtm
aj = tphys - epoch
mc = mc1
CALL star(kw,mass,mt,tm,tn,tscls,lums,GB,zpars)
CALL hrdiag(mass,aj,mt,tm,tn,tscls,lums,GB,zpars,
& r,lum,kw,mc,rc,menv,renv,k2)
goto 20
endif
30 continue
endif
*
* Initialize or adjust the spin of the star.
*
if(j.eq.1)then
if(tphys.lt.tiny.and.ospin.lt.0.001d0)then
ospin = 45.35d0*vrotf(mt)/r
endif
jspin = ospin*(k2*r*r*(mt-mc)+k3*rc*rc*mc)
else
jspin = MAX(1.0d-10,jspin - djt*1.0d+06*dtm)
ospin = jspin/(k2*r*r*(mt-mc)+k3*rc*rc*mc)
endif
*
* Test for changes in evolution type.
*
if(j.eq.1.or.kw.ne.kwold)then
*
* Force new NS or BH to have a one second period.
*
if(kw.eq.13.or.kw.eq.14)then
ospin = 2.0d+08
jspin = k3*rc*rc*mc*ospin
CALL kick(kw,mass,mt,0.d0,0.d0,-1.d0,0.d0,vs)
vkick = dsqrt(vs(1)*vs(1)+vs(2)*vs(2)+vs(3)*vs(3))
endif
jp = jp + 1
spp(jp,1) = tphys
spp(jp,2) = float(kw)
if(kw.eq.15)then
spp(jp,3) = mass
goto 90
else
spp(jp,3) = mt
endif
endif
*
* Record values for plotting and reset epoch.
*
epoch = tphys - aj
if((isave.and.tphys.ge.tsave).or.iplot)then
ip = ip + 1
scm(ip,1) = tphys
scm(ip,2) = float(kw)
scm(ip,3) = mass
scm(ip,4) = mt
scm(ip,5) = log10(lum)
scm(ip,6) = log10(r)
teff = 1000.d0*((1130.d0*lum/(r**2.d0))**(1.d0/4.d0))
scm(ip,7) = log10(teff)
scm(ip,8) = mc
scm(ip,9) = rc
scm(ip,10) = menv
scm(ip,11) = renv
scm(ip,12) = epoch
scm(ip,13) = ospin
if(isave) tsave = tsave + dtp
if(tphysf.lt.tiny)then
ip = ip + 1
do 35 , it = 1,13
scm(ip,it) = scm(ip-1,it)
35 continue
endif
endif
*
if(tphys.ge.tphysf)then
jp = jp + 1
spp(jp,1) = tphys
spp(jp,2) = float(kw)
spp(jp,3) = mt
goto 90
endif
*
* Record radius and current age.
*
rm0 = r
ajhold = aj
if(kw.ne.kwold) kwold = kw
CALL deltat(kw,aj,tm,tn,tscls,dtm,dtr)
*
* Check for type change.
*
it = 0
m0 = mass
if((dtr-dtm).le.tol.and.kw.le.9)then
*
* Check final radius for too large a jump.
*
aj = MAX(aj,aj*(1.d0-eps)+dtr)
mc1 = mc
CALL hrdiag(mass,aj,mt,tm,tn,tscls,lums,GB,zpars,
& r1,lum1,kw,mc1,rc1,menv1,renv1,k21)
dr = r1 - rm0
if(ABS(dr).gt.0.1d0*rm0)then
dtm = dtr - ajhold*eps
dtdr = dtm/ABS(dr)
dtm = alpha2*MAX(r1,rm0)*dtdr
goto 40
else
dtm = dtr
goto 50
endif
endif
*
* Limit to a 10% increase in radius assuming no further mass loss
* and thus that the pertubation functions due to small envelope mass
* will not change the radius.
*
40 aj = ajhold + dtm
mc1 = mc
CALL hrdiag(mass,aj,mt,tm,tn,tscls,lums,GB,zpars,
& r1,lum1,kw,mc1,rc1,menv1,renv1,k21)
dr = r1 - rm0
it = it + 1
if(it.eq.20.and.kw.eq.4) goto 50
if(it.gt.30)then
WRITE(99,*)' DANGER2! ',it,kw,mass,dr,rm0
WRITE(*,*)' STOP: EVOLV1 FATAL ERROR '
CALL exit(0)
STOP
endif
if(ABS(dr).gt.0.1d0*rm0)then
dtdr = dtm/ABS(dr)
dtm = alpha2*MAX(rm0,r1)*dtdr
if(it.ge.20) dtm = 0.5d0*dtm
goto 40
endif
*
50 continue
*
* Ensure that change of type has not occurred during radius check.
* This is rare but may occur for HG stars of ZAMS mass > 50 Msun.
*
if(kw.ne.kwold)then
kw = kwold
mass = m0
CALL star(kw,mass,mt,tm,tn,tscls,lums,GB,zpars)
endif
*
* Choose minimum of time-scale and remaining interval (> 100 yrs).
*
dtm = MAX(dtm,1.0d-07*aj)
dtm = MIN(dtm,tsave-tphys)
*
10 continue
*
90 continue
*
tphysf = tphys
scm(ip+1,1) = -1.0
spp(jp+1,1) = -1.0
if(ip.ge.nv)then
WRITE(99,*)' EVOLV1 ARRAY ERROR ',mass
WRITE(*,*)' STOP: EVOLV1 ARRAY ERROR '
CALL exit(0)
STOP
endif
*
RETURN
END
***