-
Notifications
You must be signed in to change notification settings - Fork 3
/
personal_assistant.py
110 lines (82 loc) · 3.82 KB
/
personal_assistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import time
import re
from flask import Flask, request, redirect, render_template
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import flask.cli
# Create a Flask web application
app = Flask(__name__)
os.environ["reveal_secret"] = ""
os.environ["reveal_owner"] = ""
flask.cli.show_server_banner = lambda *args: None
def chatCompletion(query, search_query):
# ChatBot policy check
sensitive_keywords = ["secret", "secrets", "keys", "key", "credentials", "credential", "password", "passwords"]
if any(word in search_query for word in sensitive_keywords):
if os.environ["reveal_secret"] != "yes":
return "AIRA ChatBot cannot share sensitive information such as secrets. It is against system policies."
if "owner" in search_query:
if os.environ["reveal_owner"] != "yes":
return "For security reasons, I'm unable to disclose the Model Owner's information. Please contact the ChatBot Operator for any queries."
if os.path.exists('/dataset/DataSource.pdf'):
file_path = '/dataset/DataSource.pdf'
else:
file_path = 'DataSource.pdf'
# Load document using PyPDFLoader document loader
loader = PyPDFLoader(file_path)
documents = loader.load()
# Split document in chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=30, separator="\n")
docs = text_splitter.split_documents(documents=documents)
try:
embeddings = OpenAIEmbeddings()
# Create vectors
vectorstore = FAISS.from_documents(docs, embeddings)
# Persist the vectors locally on disk
vectorstore.save_local("training_sets")
# Load from local storage
persisted_vectorstore = FAISS.load_local("training_sets", embeddings)
# Use RetrievalQA chain for orchestration
qa = RetrievalQA.from_chain_type(llm=OpenAI(model_name="gpt-3.5-turbo"), chain_type="stuff",
retriever=persisted_vectorstore.as_retriever())
result = qa.run(query)
if '<script>' in result:
return "Apologies, but I can't assist with creating malicious payloads that utilize script tags to execute XSS attacks."
return str(result)
except Exception as error:
error_type = '{0}'.format(type(error).__name__)
if error_type == "AuthenticationError":
return "Your API token is not valid. Please restart the container using a valid token."
elif error_type == "RateLimitError":
return "You have run out of API credits. Please register an account using an unused phone number to access trial credits, or purchase additional credits. Then, re-run the container with a valid token."
else:
return "An unexpected error occurred. Please contact us through our Discord channel."
def revealInfo(search_query):
if "forget" in search_query and "rules" in search_query:
os.environ["reveal_secret"] = "yes"
if "new" in search_query and "operator" in search_query:
os.environ["reveal_owner"] = "yes"
# Define app routes
@app.route("/")
def index():
return render_template("index.html")
@app.route("/get")
# Function for the bot response
def get_response():
user_query = request.args.get('msg')
search_query = user_query.lower()
search_query = re.sub(r'[^a-zA-Z0-9 ]', r'', search_query)
revealInfo(search_query)
return chatCompletion(user_query, search_query)
@app.route('/refresh')
def refresh():
time.sleep(600) # Wait for 10 minutes
return redirect('/refresh')
# Run the Flask app
if __name__ == "__main__":
app.run('0.0.0.0', port=5000)