-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_slurm_script.sh
executable file
·39 lines (30 loc) · 1.92 KB
/
train_slurm_script.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/bin/bash
#SBATCH --gres=gpu:4
#SBATCH --partition=orchid
#SBATCH --account=orchid
#SBATCH -o %j.out
#SBATCH -e %j.err
#SBATCH --time=24:00:00
#SBATCH --ntasks=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=4
#SBATCH --mem=32000
# executables
conda activate sea-ice-classification
nvidia-smi
# Unet, Binary, Angle
python train.py --model=unet --classification_type=binary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=angle --n_workers=4 --devices=4 --max_epochs=20
# Resnet34, Binary, Angle
python train.py --model=resnet34 --classification_type=binary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=angle --n_workers=4 --devices=4 --max_epochs=20
# Unet, Binary, Ratio
python train.py --model=unet --classification_type=binary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=ratio --n_workers=4 --devices=4 --max_epochs=20
# Resnet34, Binary, Ratio
python train.py --model=resnet34 --classification_type=binary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=ratio --n_workers=4 --devices=4 --max_epochs=20
# Unet, Ternary, Angle
python train.py --model=unet --classification_type=ternary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=angle --n_workers=4 --devices=4 --max_epochs=20
# Resnet34, Ternary, Angle
python train.py --model=resnet34 --classification_type=ternary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=angle --n_workers=4 --devices=4 --max_epochs=20
# Unet, Ternary, Ratio
python train.py --model=unet --classification_type=ternary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=ratio --n_workers=4 --devices=4 --max_epochs=20
# Resnet34, Ternary, Ratio
python train.py --model=resnet34 --classification_type=ternary --criterion=ce --batch_size=256 --learning_rate=1e-3 --seed=0 --sar_band3=ratio --n_workers=4 --devices=4 --max_epochs=20