-
Notifications
You must be signed in to change notification settings - Fork 0
/
blip_caption.py
111 lines (90 loc) · 3.29 KB
/
blip_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import onnxruntime as rt
import argparse
from PIL import Image, ImageFile
import os
import huggingface_hub
import pandas as pd
import argparse
from glob import glob
from multiprocessing import Pool, current_process
from tqdm import tqdm
import json
from transformers import BlipProcessor, BlipForConditionalGeneration
ImageFile.LOAD_TRUNCATED_IMAGES = True
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, default=".")
parser.add_argument("--resume", default=False, action="store_true")
parser.add_argument("--num_processes", type=int, default=1)
parser.add_argument("--save_path", type=str, default=None)
parser.add_argument("--rel_path", type=str, default=None)
parser.add_argument("--model_path", type=str, default=None)
parser.add_argument("--num_gpus", type=int, default=1)
args = parser.parse_args()
if args.save_path is None:
args.save_path = os.path.join(args.dataset_path, "blip_captions.json")
else:
os.makedirs(os.path.dirname(args.save_path), exist_ok=True)
if args.rel_path is None:
args.rel_path = args.dataset_path
return args
def gen_captions(image_path):
global model
global processor
image = Image.open(image_path)
inputs = processor(image, return_tensors="pt").to(model.device)
out = model.generate(**inputs)
return processor.decode(out[0], skip_special_tokens=True)
def is_image(image_path):
image_types = ["png", "jpg", ".peg", "gif", "webp", "bmp", "jpeg"]
if image_path.split(".")[-1] not in image_types:
return False
# try:
# Image.open(image_path).convert("RGBA")
# except Exception:
# print(f"Error opening {image_path}")
# return False
else:
return True
def is_valid_image(image_path):
try:
Image.open(image_path).convert("RGBA")
except Exception:
print(f"Error opening {image_path}")
return False
else:
return True
def init_subprocess(model_path, num_gpus):
global model
global processor
processor = BlipProcessor.from_pretrained(model_path)
model = BlipForConditionalGeneration.from_pretrained(model_path).to(
f"cuda:{(current_process()._identity[0] - 1) % num_gpus}"
)
if __name__ == "__main__":
args = parse_args()
image_paths = glob(f"{args.dataset_path}/**", recursive=True)
image_paths = [image_path for image_path in image_paths if is_image(image_path)]
if args.resume:
with open(args.save_path, "r") as f:
prompts = json.load(f)
image_paths = [
image_path
for image_path in image_paths
if os.path.relpath(image_path, args.rel_path) not in prompts.keys()
]
else:
prompts = {}
print(f"num images:{len(image_paths)}")
print("gen tags")
with Pool(
processes=args.num_processes,
initializer=init_subprocess,
initargs=(args.model_path, args.num_gpus),
) as p:
results = list(tqdm(p.imap(gen_captions, image_paths), total=len(image_paths)))
for image_path, prompt in zip(image_paths, results):
prompts[os.path.relpath(image_path, args.rel_path)] = prompt
with open(args.save_path, "w") as f:
json.dump(prompts, f, indent=4)