forked from Syomus/ProceduralToolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Closest3D.cs
488 lines (433 loc) · 19.3 KB
/
Closest3D.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
using UnityEngine;
namespace ProceduralToolkit
{
/// <summary>
/// Collection of closest point(s) algorithms
/// </summary>
public static partial class Closest
{
#region Point-Line
/// <summary>
/// Projects the point onto the line
/// </summary>
public static Vector3 PointLine(Vector3 point, Line3 line)
{
return PointLine(point, line.origin, line.direction, out float projectedX);
}
/// <summary>
/// Projects the point onto the line
/// </summary>
/// <param name="projectedX">Position of the projected point on the line relative to the origin</param>
public static Vector3 PointLine(Vector3 point, Line3 line, out float projectedX)
{
return PointLine(point, line.origin, line.direction, out projectedX);
}
/// <summary>
/// Projects the point onto the line
/// </summary>
/// <param name="lineDirection">Normalized direction of the line</param>
public static Vector3 PointLine(Vector3 point, Vector3 lineOrigin, Vector3 lineDirection)
{
return PointLine(point, lineOrigin, lineDirection, out float projectedX);
}
/// <summary>
/// Projects the point onto the line
/// </summary>
/// <param name="lineDirection">Normalized direction of the line</param>
/// <param name="projectedX">Position of the projected point on the line relative to the origin</param>
public static Vector3 PointLine(Vector3 point, Vector3 lineOrigin, Vector3 lineDirection, out float projectedX)
{
// In theory, sqrMagnitude should be 1, but in practice this division helps with numerical stability
projectedX = Vector3.Dot(lineDirection, point - lineOrigin)/lineDirection.sqrMagnitude;
return lineOrigin + lineDirection*projectedX;
}
#endregion Point-Line
#region Point-Ray
/// <summary>
/// Projects the point onto the ray
/// </summary>
public static Vector3 PointRay(Vector3 point, Ray ray)
{
return PointRay(point, ray.origin, ray.direction, out float projectedX);
}
/// <summary>
/// Projects the point onto the ray
/// </summary>
/// <param name="projectedX">Position of the projected point on the ray relative to the origin</param>
public static Vector3 PointRay(Vector3 point, Ray ray, out float projectedX)
{
return PointRay(point, ray.origin, ray.direction, out projectedX);
}
/// <summary>
/// Projects the point onto the ray
/// </summary>
/// <param name="rayDirection">Normalized direction of the ray</param>
public static Vector3 PointRay(Vector3 point, Vector3 rayOrigin, Vector3 rayDirection)
{
return PointRay(point, rayOrigin, rayDirection, out float projectedX);
}
/// <summary>
/// Projects the point onto the ray
/// </summary>
/// <param name="rayDirection">Normalized direction of the ray</param>
/// <param name="projectedX">Position of the projected point on the ray relative to the origin</param>
public static Vector3 PointRay(Vector3 point, Vector3 rayOrigin, Vector3 rayDirection, out float projectedX)
{
Vector3 toPoint = point - rayOrigin;
float pointProjection = Vector3.Dot(rayDirection, toPoint);
if (pointProjection <= 0)
{
projectedX = 0;
return rayOrigin;
}
// In theory, sqrMagnitude should be 1, but in practice this division helps with numerical stability
projectedX = pointProjection/rayDirection.sqrMagnitude;
return rayOrigin + rayDirection*projectedX;
}
#endregion Point-Ray
#region Point-Segment
/// <summary>
/// Projects the point onto the segment
/// </summary>
public static Vector3 PointSegment(Vector3 point, Segment3 segment)
{
return PointSegment(point, segment.a, segment.b, out float projectedX);
}
/// <summary>
/// Projects the point onto the segment
/// </summary>
/// <param name="projectedX">Normalized position of the projected point on the segment.
/// Value of zero means that the projected point coincides with segment.a.
/// Value of one means that the projected point coincides with segment.b.</param>
public static Vector3 PointSegment(Vector3 point, Segment3 segment, out float projectedX)
{
return PointSegment(point, segment.a, segment.b, out projectedX);
}
/// <summary>
/// Projects the point onto the segment
/// </summary>
public static Vector3 PointSegment(Vector3 point, Vector3 segmentA, Vector3 segmentB)
{
return PointSegment(point, segmentA, segmentB, out float projectedX);
}
/// <summary>
/// Projects the point onto the segment
/// </summary>
/// <param name="projectedX">Normalized position of the projected point on the segment.
/// Value of zero means that the projected point coincides with <paramref name="segmentA"/>.
/// Value of one means that the projected point coincides with <paramref name="segmentB"/>.</param>
public static Vector3 PointSegment(Vector3 point, Vector3 segmentA, Vector3 segmentB, out float projectedX)
{
Vector3 segmentDirection = segmentB - segmentA;
float sqrSegmentLength = segmentDirection.sqrMagnitude;
if (sqrSegmentLength < Geometry.Epsilon)
{
// The segment is a point
projectedX = 0;
return segmentA;
}
float pointProjection = Vector3.Dot(segmentDirection, point - segmentA);
if (pointProjection <= 0)
{
projectedX = 0;
return segmentA;
}
if (pointProjection >= sqrSegmentLength)
{
projectedX = 1;
return segmentB;
}
projectedX = pointProjection/sqrSegmentLength;
return segmentA + segmentDirection*projectedX;
}
#endregion Point-Segment
#region Point-Sphere
/// <summary>
/// Projects the point onto the sphere
/// </summary>
public static Vector3 PointSphere(Vector3 point, Sphere sphere)
{
return PointSphere(point, sphere.center, sphere.radius);
}
/// <summary>
/// Projects the point onto the sphere
/// </summary>
public static Vector3 PointSphere(Vector3 point, Vector3 sphereCenter, float sphereRadius)
{
return sphereCenter + (point - sphereCenter).normalized*sphereRadius;
}
#endregion Point-Sphere
#region Line-Sphere
/// <summary>
/// Finds closest points on the line and the sphere
/// </summary>
public static void LineSphere(Line3 line, Sphere sphere, out Vector3 linePoint, out Vector3 spherePoint)
{
LineSphere(line.origin, line.direction, sphere.center, sphere.radius, out linePoint, out spherePoint);
}
/// <summary>
/// Finds closest points on the line and the sphere
/// </summary>
public static void LineSphere(Vector3 lineOrigin, Vector3 lineDirection, Vector3 sphereCenter, float sphereRadius,
out Vector3 linePoint, out Vector3 spherePoint)
{
Vector3 originToCenter = sphereCenter - lineOrigin;
float centerProjection = Vector3.Dot(lineDirection, originToCenter);
float sqrDistanceToLine = originToCenter.sqrMagnitude - centerProjection*centerProjection;
float sqrDistanceToIntersection = sphereRadius*sphereRadius - sqrDistanceToLine;
if (sqrDistanceToIntersection < -Geometry.Epsilon)
{
// No intersection
linePoint = lineOrigin + lineDirection*centerProjection;
spherePoint = sphereCenter + (linePoint - sphereCenter).normalized*sphereRadius;
return;
}
if (sqrDistanceToIntersection < Geometry.Epsilon)
{
// Point intersection
linePoint = spherePoint = lineOrigin + lineDirection*centerProjection;
return;
}
// Two points intersection
float distanceToIntersection = Mathf.Sqrt(sqrDistanceToIntersection);
float distanceA = centerProjection - distanceToIntersection;
linePoint = spherePoint = lineOrigin + lineDirection*distanceA;
}
#endregion Line-Sphere
#region Ray-Sphere
/// <summary>
/// Finds closest points on the ray and the sphere
/// </summary>
public static void RaySphere(Ray ray, Sphere sphere, out Vector3 rayPoint, out Vector3 spherePoint)
{
RaySphere(ray.origin, ray.direction, sphere.center, sphere.radius, out rayPoint, out spherePoint);
}
/// <summary>
/// Finds closest points on the ray and the sphere
/// </summary>
public static void RaySphere(Vector3 rayOrigin, Vector3 rayDirection, Vector3 sphereCenter, float sphereRadius,
out Vector3 rayPoint, out Vector3 spherePoint)
{
Vector3 originToCenter = sphereCenter - rayOrigin;
float centerProjection = Vector3.Dot(rayDirection, originToCenter);
if (centerProjection + sphereRadius < -Geometry.Epsilon)
{
// No intersection
rayPoint = rayOrigin;
spherePoint = sphereCenter - originToCenter.normalized*sphereRadius;
return;
}
float sqrDistanceToLine = originToCenter.sqrMagnitude - centerProjection*centerProjection;
float sqrDistanceToIntersection = sphereRadius*sphereRadius - sqrDistanceToLine;
if (sqrDistanceToIntersection < -Geometry.Epsilon)
{
// No intersection
if (centerProjection < -Geometry.Epsilon)
{
rayPoint = rayOrigin;
spherePoint = sphereCenter - originToCenter.normalized*sphereRadius;
return;
}
rayPoint = rayOrigin + rayDirection*centerProjection;
spherePoint = sphereCenter + (rayPoint - sphereCenter).normalized*sphereRadius;
return;
}
if (sqrDistanceToIntersection < Geometry.Epsilon)
{
if (centerProjection < -Geometry.Epsilon)
{
// No intersection
rayPoint = rayOrigin;
spherePoint = sphereCenter - originToCenter.normalized*sphereRadius;
return;
}
// Point intersection
rayPoint = spherePoint = rayOrigin + rayDirection*centerProjection;
return;
}
// Line intersection
float distanceToIntersection = Mathf.Sqrt(sqrDistanceToIntersection);
float distanceA = centerProjection - distanceToIntersection;
if (distanceA < -Geometry.Epsilon)
{
float distanceB = centerProjection + distanceToIntersection;
if (distanceB < -Geometry.Epsilon)
{
// No intersection
rayPoint = rayOrigin;
spherePoint = sphereCenter - originToCenter.normalized*sphereRadius;
return;
}
// Point intersection
rayPoint = spherePoint = rayOrigin + rayDirection*distanceB;
return;
}
// Two points intersection
rayPoint = spherePoint = rayOrigin + rayDirection*distanceA;
}
#endregion Ray-Sphere
#region Segment-Sphere
/// <summary>
/// Finds closest points on the segment and the sphere
/// </summary>
public static void SegmentSphere(Segment3 segment, Sphere sphere, out Vector3 segmentPoint, out Vector3 spherePoint)
{
SegmentSphere(segment.a, segment.b, sphere.center, sphere.radius, out segmentPoint, out spherePoint);
}
/// <summary>
/// Finds closest points on the segment and the sphere
/// </summary>
public static void SegmentSphere(Vector3 segmentA, Vector3 segmentB, Vector3 sphereCenter, float sphereRadius,
out Vector3 segmentPoint, out Vector3 spherePoint)
{
Vector3 segmentAToCenter = sphereCenter - segmentA;
Vector3 fromAtoB = segmentB - segmentA;
float segmentLength = fromAtoB.magnitude;
if (segmentLength < Geometry.Epsilon)
{
segmentPoint = segmentA;
float distanceToPoint = segmentAToCenter.magnitude;
if (distanceToPoint < sphereRadius + Geometry.Epsilon)
{
if (distanceToPoint > sphereRadius - Geometry.Epsilon)
{
spherePoint = segmentPoint;
return;
}
if (distanceToPoint < Geometry.Epsilon)
{
spherePoint = segmentPoint;
return;
}
}
Vector3 toPoint = -segmentAToCenter/distanceToPoint;
spherePoint = sphereCenter + toPoint*sphereRadius;
return;
}
Vector3 segmentDirection = fromAtoB.normalized;
float centerProjection = Vector3.Dot(segmentDirection, segmentAToCenter);
if (centerProjection + sphereRadius < -Geometry.Epsilon ||
centerProjection - sphereRadius > segmentLength + Geometry.Epsilon)
{
// No intersection
if (centerProjection < 0)
{
segmentPoint = segmentA;
spherePoint = sphereCenter - segmentAToCenter.normalized*sphereRadius;
return;
}
segmentPoint = segmentB;
spherePoint = sphereCenter - (sphereCenter - segmentB).normalized*sphereRadius;
return;
}
float sqrDistanceToLine = segmentAToCenter.sqrMagnitude - centerProjection*centerProjection;
float sqrDistanceToIntersection = sphereRadius*sphereRadius - sqrDistanceToLine;
if (sqrDistanceToIntersection < -Geometry.Epsilon)
{
// No intersection
if (centerProjection < -Geometry.Epsilon)
{
segmentPoint = segmentA;
spherePoint = sphereCenter - segmentAToCenter.normalized*sphereRadius;
return;
}
if (centerProjection > segmentLength + Geometry.Epsilon)
{
segmentPoint = segmentB;
spherePoint = sphereCenter - (sphereCenter - segmentB).normalized*sphereRadius;
return;
}
segmentPoint = segmentA + segmentDirection*centerProjection;
spherePoint = sphereCenter + (segmentPoint - sphereCenter).normalized*sphereRadius;
return;
}
if (sqrDistanceToIntersection < Geometry.Epsilon)
{
if (centerProjection < -Geometry.Epsilon)
{
// No intersection
segmentPoint = segmentA;
spherePoint = sphereCenter - segmentAToCenter.normalized*sphereRadius;
return;
}
if (centerProjection > segmentLength + Geometry.Epsilon)
{
// No intersection
segmentPoint = segmentB;
spherePoint = sphereCenter - (sphereCenter - segmentB).normalized*sphereRadius;
return;
}
// Point intersection
segmentPoint = spherePoint = segmentA + segmentDirection*centerProjection;
return;
}
// Line intersection
float distanceToIntersection = Mathf.Sqrt(sqrDistanceToIntersection);
float distanceA = centerProjection - distanceToIntersection;
float distanceB = centerProjection + distanceToIntersection;
bool pointAIsAfterSegmentA = distanceA > -Geometry.Epsilon;
bool pointBIsBeforeSegmentB = distanceB < segmentLength + Geometry.Epsilon;
if (pointAIsAfterSegmentA && pointBIsBeforeSegmentB)
{
segmentPoint = spherePoint = segmentA + segmentDirection*distanceA;
return;
}
if (!pointAIsAfterSegmentA && !pointBIsBeforeSegmentB)
{
// The segment is inside, but no intersection
if (distanceA > -(distanceB - segmentLength))
{
segmentPoint = segmentA;
spherePoint = segmentA + segmentDirection*distanceA;
return;
}
segmentPoint = segmentB;
spherePoint = segmentA + segmentDirection*distanceB;
return;
}
bool pointAIsBeforeSegmentB = distanceA < segmentLength + Geometry.Epsilon;
if (pointAIsAfterSegmentA && pointAIsBeforeSegmentB)
{
// Point A intersection
segmentPoint = spherePoint = segmentA + segmentDirection*distanceA;
return;
}
bool pointBIsAfterSegmentA = distanceB > -Geometry.Epsilon;
if (pointBIsAfterSegmentA && pointBIsBeforeSegmentB)
{
// Point B intersection
segmentPoint = spherePoint = segmentA + segmentDirection*distanceB;
return;
}
// No intersection
if (centerProjection < 0)
{
segmentPoint = segmentA;
spherePoint = sphereCenter - segmentAToCenter.normalized*sphereRadius;
return;
}
segmentPoint = segmentB;
spherePoint = sphereCenter - (sphereCenter - segmentB).normalized*sphereRadius;
}
#endregion Segment-Sphere
#region Sphere-Sphere
/// <summary>
/// Finds closest points on the spheres
/// </summary>
public static void SphereSphere(Sphere sphereA, Sphere sphereB, out Vector3 pointA, out Vector3 pointB)
{
SphereSphere(sphereA.center, sphereA.radius, sphereB.center, sphereB.radius, out pointA, out pointB);
}
/// <summary>
/// Finds closest points on the spheres
/// </summary>
public static void SphereSphere(Vector3 centerA, float radiusA, Vector3 centerB, float radiusB,
out Vector3 pointA, out Vector3 pointB)
{
Vector3 fromBtoA = (centerA - centerB).normalized;
pointA = centerA - fromBtoA*radiusA;
pointB = centerB + fromBtoA*radiusB;
}
#endregion Sphere-Sphere
}
}