This software provides Coq commands to generate C source code from Gallina definitions.
https://github.com/akr/codegen
- Simple Gallina to C translation (the translated code corresponds strict evaluation of Gallina term)
- Monomorphization by partial evaluation
- Customizable inductive type implementation in C
- Linearity checker for safe destructive update of values
- Borrow checker to ease read only access of linear values
- Downward-only closures (functions can be passed as arguments but return values cannot contain functions)
- Guaranteed tail recursion elimination
You need Coq and OCaml.
- Coq 8.19 (Coq 8.18 doesn't work)
- OCaml 5.1.1
You also need following to test codegen.
- ocamlfind 1.9.6
- ounit2 2.2.7 (ounit2 2.2.5 doesn't work)
make
make check # optional
make install
Codegen can be used interactively. This is useful to examine C code generated from a Gallina function.
Require Import codegen.codegen.
Fixpoint add m n :=
match m with
| O => n
| S m' => add m' (S n)
end.
CodeGen Gen add.
(*
nat
add(nat v1_m, nat v2_n)
{
nat v3_m_;
nat v4_n;
entry_add:
switch (sw_nat(v1_m))
{
default:
return v2_n;
case S_tag:
v3_m_ = S_get_member_0(v1_m);
v4_n = S(v2_n);
v1_m = v3_m_;
v2_n = v4_n;
goto entry_add;
}
}
*)
This code assumes nat
type is defined in C.
Also, sw_nat
, S_tag
, S_get_member_0
and S
are should be defined in C.
We can define them as follows. (Integer overflow is ignored here.)
typedef nat uint64_t;
#define sw_nat(n) ((n) == 0)
#define S_tag 0
#define S_get_member_0(n) ((n) - 1)
#define S(n) ((n) + 1)
It is possible to configure code generation of inductive types.
Require Import codegen.codegen.
Fixpoint add m n :=
match m with
| O => n
| S m' => add m' (S n)
end.
CodeGen IndType nat => "uint64_t" swfunc "" with
| O => constant "0" case "0" (* case "0" means "case 0:" in C switch statement *)
| S => primitive "S" case "" accessor "pred". (* case "" means "default:" in C switch statement *)
CodeGen Gen add.
(*
uint64_t
add(uint64_t v1_m, uint64_t v2_n)
{
uint64_t v3_m_;
uint64_t v4_n;
entry_add:
switch (v1_m)
{
case 0:
return v2_n;
default:
v3_m_ = pred(v1_m);
v4_n = succ(v2_n);
v1_m = v3_m_;
v2_n = v4_n;
goto entry_add;
}
}
*)
We can use more simpler definition of nat type in C.
#define pred(n) ((n) - 1)
#define succ(n) ((n) + 1)
Codegen can be used non-interactively. This is useful as a part of a project.
power function:
coqc -Q theories codegen -I src sample/pow.v # generates sample/pow_generated.c
gcc -g -Wall sample/pow.c -o sample/pow
sample/pow
rank algorithm of succinct data structure:
coqc -Q theories codegen -I src sample/rank.v # generates sample/rank_generated.c
gcc -g -Wall sample/rank.c -o sample/rank
sample/rank rand
sample/rank 11011110001010101111
sprintf function:
coqc -Q theories codegen -I src sample/sprintf.v # generates sample/sprintf_generated.c
gcc -g -Wall sample/sprintf.c -o sample/sprintf
sample/sprintf
- Project Page https://github.com/akr/codegen
- Formatted development memo https://akr.github.io/codegen-doc/
- Tanaka Akira
- Reynald Affeldt
- Jacques Garrigue
This work is supported by JSPS KAKENHI Grant Number 15K12013 (2015-04-01 to 2018-03-31).
Copyright (C) 2016- National Institute of Advanced Industrial Science and Technology (AIST) "monomorphization plugin for Coq" AIST program registration number: H29PRO-2090
GNU Lesser General Public License Version 2.1 or later