-
Notifications
You must be signed in to change notification settings - Fork 3
/
peristimulus.py
479 lines (439 loc) · 23.1 KB
/
peristimulus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# System
# Data
import numpy as np
import pandas as pd
from scipy import interpolate
# Plotting
import matplotlib.pyplot as plt
import seaborn as sns
# Utils
from utils import *
from behaviors import *
#######################################################
###################### Analysis #######################
#######################################################
def time_aligned_from_files():
pass
def align_activities_with_event(sigs, times, event_times, time_window, discrete=False, align_last=False, fr=None):
""" Takes signals (... x T), time warp is there is more than one event time type (mean frames)
:param sigs: (... x T),
:param times: (... x T) if discrete else float for frame rate (Hz)
:param event_times: np.array (... (x e) x K), e as number of different events
:param time_window: np.ndarray or [pre, post, (si, if discrete==False)], if discrete, int, else,
double in ms
:return: aligned: np.array (... x K x W) / list, W is variable depending on
aligned_times
TODO: allow the functionality of align with the last event if needed
TODO: subjected to change as the trial numbers for different sessions are largely variable
TODO: Generalize to arbitrary events with uniform time window
"""
if times is None:
times = np.arange(sigs.shape[-1])
assert np.all(~np.isnan(event_times)), "event_times must not contain nans"
if isinstance(time_window, tuple):
time_window = calculate_best_time_window(times, event_times, time_window)
dt = 2 * (time_window[1] - time_window[0])
k = event_times.shape[-1]
if discrete:
assert isinstance(sigs, np.ndarray), 'currently only support discrete on ndarray'
assert len(times) == sigs.shape[-1]
assert fr is not None
min_time, max_time = np.min(event_times), np.max(event_times)
t0, tf = time_window[0], time_window[-1]
t0_new, tf_new = int(t0 * fr), int(tf * fr)
twindow = np.arange(t0_new, tf_new+1)
assert ((min_time + t0_new) >= 0) & ((max_time + tf_new) >= np.max(times))
result = np.concatenate([sigs[..., np.newaxis, twindow+et] for et in event_times], axis=len(sigs)-1)
return result
else:
if len(sigs.shape) != 1:
return np.concatenate([align_activities_with_event(sigs[i], times[i], event_times[i],
time_window, discrete)[np.newaxis, ...] for i in range(sigs.shape[0])], axis=0)
else:
# ASSUMING time_window + 2dt is shorter than time horizon
assert (time_window[-1] - time_window[0] + 2 * dt) < (np.max(times)-np.min(times)), \
"Choice of time window too big for the time horizon!"
# TODO: better method by using matrix reshaping in same order w. parallel interpolation
result = np.full((k, len(time_window)), np.nan)
for ik in range(k):
if len(event_times.shape) > len(sigs.shape):
evnt = event_times[:, ik]
else:
evnt = event_times[np.newaxis, ik]
align = evnt[-1] if align_last else evnt[0]
#print(times[0], align+time_window[0]-dt)
rois = (times >= align + time_window[0] - dt) & (times <= align + time_window[-1] + dt)
# print(dt, time_window[0], time_window[-1], evnt[0], (times[rois] - evnt[0])[[0, -1]])
if (times[0] > align + time_window[0] - dt) & (times[-1] < align + time_window[-1] + dt):
logging.warning(f'WARNING: trial {ik}, time traces gets cutoff at edges by time_window, '
f'results might not be as expected (e.g. nans)')
# TODO: looking into the interpolation for better performance
# change to extrapolate
# TODO: compare np.nan vs "extrapolate"
dtt = np.mean(np.diff(times)) # originally made the mistake assuming time_window having same sampling rate as sig_time
if np.sum(rois) < int(np.floor((time_window[-1] - time_window[0]) / dtt)):
logging.info(f"skipping {ik}th entry in event_times")
else:
result[ik] = interpolate.interp1d(times[rois] - align, sigs[rois],
fill_value="extrapolate")(time_window)
# TODO: proof read again
return result
def calculate_best_time_window(times, event_times, twindow_tuple, align_last):
# TODO: add time warp, dynamic method
# si should be shorter than sampling interval in times
pre, post, si = twindow_tuple
if len(event_times.shape) > len(times.shape):
evts = event_times[:, 0]
start, end = evts[0], evts[-1]
if align_last:
return np.arange(post, start - end - pre - si, -si)[::-1]
else:
return np.arange(- pre, end - start + post + si, si)
else:
return np.arange(pre, post+1, si)
#######################################################
################### Visualization #####################
#######################################################
def peristimulus_time_trial_average_plot(sigs, times, tags, extra_event_times=None, ylim=None, ax=None,
method='ci95'):
"""
TODO: enable feeding error bars
Take in list of signal groups plot hued line plots in ax.
:param sigs: np.ndarray or list of disparate signals (np.ndarray); if sigs are organized in 2D list,
then treat each inner list as one group and plot with
:param times: in matching dimension as sigs, with time windows; if just np.ndarray, time windows is
treated as uniform for all sigs
:param tags: list with same length as len(sigs)
:param extra_event_times: list of tuples (name, t) extra events
:return:
"""
# TODO: enable specific color schemes
if ax is None:
ax = plt.gca()
if isinstance(sigs, np.ndarray):
sigs = [sigs]
if len(tags) == 4:
evnt, xlb, ylbl, lgs = tags
colors = sns.color_palette("gist_ncar_r", n_colors=len(sigs))
else:
evnt, xlb, ylbl, lgs, colors = tags
nolegend = False
if lgs is None:
nolegend = True
lgs = ['sig']
for i, isig in enumerate(sigs):
ilg = lgs[i]
if isinstance(isig, list):
# TODO: special treatment of group of inhomogeneous signals
pass
else:
itime = times if isinstance(times, np.ndarray) else times[i]
isig = isig.reshape((-1, isig.shape[-1]), order='C')
meansig = np.nanmean(isig, axis=0)
# TODO: better method for calculating stderr with nans
stderr = np.nanstd(isig, axis=0) / np.sqrt(isig.shape[0])
ax.plot(itime, meansig, color=colors[i], label=ilg)
if method == 'stderr':
lower, upper = meansig-stderr, meansig+stderr
elif method[:2] == 'ci':
alpha = 1 - float(method[2:]) / 100
meanlamb = lambda xs: np.mean(xs, axis=0)
lower, upper = get_bootstrap_CI(bootstrap_ests(isig, meanlamb, B=10000), alpha=alpha)
else:
raise NotImplementedError(f"Unknown method {method}")
ax.fill_between(itime, lower, upper, color=colors[i], alpha=0.2)
ax.axvline(0, ls='--')
if extra_event_times is None:
extra_event_times = []
for ename, eevnt in extra_event_times:
ax.axvline(eevnt, ls='--')
ax.set_xlabel(xlb)
ax.set_ylabel(ylbl)
if ylim is not None:
ax.set_ylim(ylim)
if not nolegend:
ax.legend(fontsize="xx-small")
return ax
def get_bootstrap_samples(X_sample):
"TODO: change by default do axis 0"
# X_sample is P_hat
N = X_sample.shape[0]
sample_index = np.random.choice(N, N)
return X_sample[sample_index]
def bootstrap_ests(X_sample, est, B=10000):
theta_n = est(X_sample)
if isinstance(theta_n, np.number):
K = 1
else:
K = len(theta_n)
theta_new = np.empty((B, K))
for i in range(B):
isamp = get_bootstrap_samples(X_sample)
theta_new[i] = est(isamp)
return theta_new
def get_bootstrap_CI(bs_samples, alpha=0.05):
beta_lb = np.percentile(bs_samples, (alpha / 2) * 100, axis=0)
beta_ub = np.percentile(bs_samples, (1 - alpha / 2)*100, axis=0)
return beta_lb, beta_ub
def peristimulus_time_trial_heatmap_plot(sigs, times, trials, tags, extra_event_times=None, trial_marks=None,
sort=True, ax=None):
""" Takes in signals, time windows
:param sigs: np.ndarray
:param trials: trial numbers
:param tags: list with same length as len(sigs)
:param extra_event_times: list of extra events
:return:
TODO:generalize to multiple events and sort heatmap with event times
"""
# https://matplotlib.org/3.1.0/gallery/images_contours_and_fields/image_annotated_heatmap.html
# TODO: enable specific color schemes
if ax is None:
ax = plt.gca()
ttle, xlb, ylbl = tags
assert len(sigs.shape) >= 2, "multiple trial information is required"
sigs = sigs.reshape((-1, )+sigs.shape[-2:], order='C')
sigs = np.nanmean(sigs, axis=0)
# TODO: more careful play of colorbar
# TODO: heatmap align time stamps to the grids
# Sorting signal with respect to extra_event_times
assert len(np.where(times == 0)[0]) == 1, "0ms should be unique"
zero = np.where(times == 0)[0][0]
if extra_event_times is None:
extra_event_times = []
if extra_event_times and isinstance(extra_event_times[0][1], np.ndarray):
ename0, eevnt0 = extra_event_times[0]
assert len(eevnt0) == sigs.shape[0]
# Sort signal according to extra event times
sort_args = np.argsort(eevnt0)
sigs = sigs[sort_args]
trials = trials[sort_args]
for j in range(len(extra_event_times)):
enamej, eevntj = extra_event_times[j]
extra_event_times[j] = (enamej, eevntj[sort_args])
ticks = np.zeros(len(extra_event_times)+3)
tlabels = np.zeros(len(extra_event_times)+3)
ticks[:3] = [0, zero, len(times)-1]
tlabels[:3] = [times[0], 0, times[-1]]
tt = 3
for ename, eevnt in extra_event_times:
# i+3
eind = np.where(times == eevnt)[0][0]
ticks[tt] = eind
tlabels[tt] = eevnt
tt += 1
sns.heatmap(sigs, cmap='coolwarm', ax=ax)
ax.axvline(zero, ls='--')
ax.set_xticks(ticks)
ax.set_xticklabels(tlabels)
if xlb:
ax.set_xlabel(xlb)
if ylbl:
ax.set_ylabel(ylbl)
return ax
def peristimulus_multiple_file_multiple_events(mats, event_types):
"""load list of events and align all files in mats and average them"""
pass
def behavior_aligned_FP_plots(folder, plots, behaviors, choices, options, zscore=True,
base_method='robust', denoise=True):
# TODO: think more carefully about multiple behavior alignment
""" Core function for plotting peristimulus FP signals grouped by stimulus modalities.
:param folder: str
root folder storing the FP data, e.g. "ProbSwitch_FP_data"
:param plots: str
root folder storing all the analysis plots
:param behaviors: list
list of behaviors of interests, currently the function works best with only one stimulus
but soon addition behavior would be added (water marks for instance)
:param choices: dict
standard CHOICE DICT defined in the documents
:param base_method: so far FP method is lost in hdf5, incorporate this
:return:
"""
sigs = options['sigs']
tags = ['DA', 'Ca']
row, rows, col, cols = options['row'], options['rows'], options['col'], options['cols']
hue, hues, plot_type = options['hue'], options['hues'], options['plot_type']
if 'ylim' in options:
# HAS TO BE 2D list
ylims = options['ylim']
else:
ylims = None
if isinstance(behaviors, str):
behaviors = [behaviors]
if choices is None:
choices = {g: get_prob_switch_all_sessions(folder, g) for g in ('D1', 'A2A')}
meas = ('zscore_' if zscore else '') + 'dF/F'
denoise_arg = '_denoise' if denoise else ''
effect_arg = "_".join([e for e in [row, col, hue] if e])
behavior_arg = "_".join(behaviors)
# hue: ITI, row, col: laterality
for group in ['D1', 'A2A']:
neur_type = group if group == 'D1' else 'D2'
sessions = choices[group]
time_window = np.arange(-2000, 2001, 50)
for animal in sessions:
for session in sessions[animal]:
print(animal, session)
files = encode_to_filename(folder, animal, session)
matfile, green, red, fp = files['processed'], files['green'], files['red'], files['FP']
# Load FP
if fp is not None:
with h5py.File(fp, 'r') as fp_hdf5:
fp_sigs = [access_mat_with_path(fp_hdf5, f'{tags[i]}/dff/{base_method}')
for i in range(len(tags))]
fp_times = [access_mat_with_path(fp_hdf5, f'{tags[i]}/time') for i in
range(len(tags))]
else:
print(f"Warning {animal} {session} does not have photometry processed!")
fp_times, fp_sigs, iso_times, iso_sigs = get_sources_from_csvs([green, red],
tags=('DA', 'Ca'), show=False)
fp_sigs = [raw_fluor_to_dff(fp_times[i], fp_sigs[i], iso_times[i], iso_sigs[i], base_method,
zscore=False) for i in range(len(fp_sigs))]
if denoise:
L = len(fp_times)
new_times, new_sigs = [None] * L, [None] * L
for i in range(L):
new_sigs[i], new_times[i] = denoise_quasi_uniform(fp_sigs[i], fp_times[i])
fp_sigs, fp_times = new_sigs, new_times
if zscore:
fp_sigs = [(fp_sigs[i] - np.mean(fp_sigs[i])) / np.std(fp_sigs[i], ddof=1)
for i in range(len(fp_sigs))]
# TODO: for now just do plots for one session
mat = h5py.File(matfile, 'r')
# Get aligned signals to behaviors
behavior_times = np.vstack([get_behavior_times(mat, beh) for beh in behaviors])
nonan_sel = ~np.any(np.isnan(behavior_times), axis=0)
behavior_times_nonan = behavior_times[:, nonan_sel]
# TODO: ADD caps for multiple behavior time latencies
aligned = [align_activities_with_event(fp_sigs[i], fp_times[i], behavior_times_nonan,
time_window, False) for i in range(len(fp_sigs))]
# get trial features
def opt2selgroups(opt):
# add in different data
if opt is None:
return {'all': None}
if opt == 'FP':
return {'DA': 0, 'Ca': 1}
return get_trial_features(mat, opt)
rsel_groups, csel_groups, hsel_groups = opt2selgroups(row), opt2selgroups(col), \
opt2selgroups(hue)
mat.close()
zfolder = "zscore" if zscore else "dff"
# TODO: come up with unifying code for fname
subfolder = os.path.join(plots, "behavior_aligned", plot_type, effect_arg, behavior_arg,
f"{base_method}_{zfolder}{denoise_arg}")
if not os.path.exists(subfolder):
os.makedirs(subfolder)
for k, fsig in enumerate(sigs):
N_trials = np.arange(len(nonan_sel))[nonan_sel]
session_left = len(N_trials)
justsig = (row == 'FP') or (col == 'FP') or (hue == 'FP')
if fsig == 'all' or (len(sigs) == 1 and justsig):
k_aligned = aligned
else:
k_aligned = aligned[opt2selgroups('FP')[fsig]]
if plot_type == 'trial_raw':
all_ns = set()
for i in range(len(rows)):
# TODO: add extra event times if needed
for j in range(len(cols)):
# TODO: only handle the case when row is the signal variable
rsels, csels = rsel_groups[rows[i]], csel_groups[cols[j]]
# TODO: find out reason for incomplete sampling
if rsels is None:
rsels = np.full_like(nonan_sel, 1)
if csels is None:
csels = np.full_like(nonan_sel, 1)
if isinstance(csels, np.ndarray):
sels = csels[nonan_sel]
else:
raise NotImplementedError("Only row can be different signals")
if isinstance(rsels, np.ndarray):
sels = sels & rsels[nonan_sel]
ijk_aligned = k_aligned
else:
ijk_aligned = k_aligned[rsels]
for h in hues:
hsels = hsel_groups[h]
if hsels is not None:
sels = hsels[nonan_sel] & sels
in_sigs = ijk_aligned[sels]
for l in range(in_sigs.shape[0]):
extra_times = zip(behaviors[1:], np.diff(behavior_times[:, l]))
fig, ax = plt.subplots(nrows=1, ncols=1)
ax = peristimulus_time_trial_average_plot(in_sigs[l],
time_window,
(behaviors[0], "time(ms)", "",
[h]), extra_times, ax=ax)
ax.set_ylabel(rows[i] + f' ({meas})')
ax.set_title(cols[j])
lnum = N_trials[sels][l]
all_ns.add(lnum)
session_left -= 1
print(f'trial {lnum}, sessions left: {session_left}')
fig.suptitle(f"{effect_arg} effects on {neur_type} {behaviors} phase {fsig}")
sf=f"{neur_type}_{fsig}_{behavior_arg}_{rows[i]}_{cols[j]}_{h}_t{lnum}"
subfolderK = os.path.join(subfolder, f"{animal}_{session}")
if not os.path.exists(subfolderK):
os.makedirs(subfolderK)
fname = os.path.join(subfolderK, sf)
fig.savefig(fname + '.png')
plt.close(fig)
print('done!!!', len(all_ns), aligned[0].shape[0])
else:
if ylims is None:
sharey_opt = 'row' if row == 'FP' else 'col' # TODO: make it more generalized
else:
sharey_opt = False
fig, axes = plt.subplots(nrows=len(rows), ncols=len(cols), sharex=True,
sharey=sharey_opt, figsize=(20, 10))
if len(rows) == 1 and len(cols) == 1:
axes = np.array([[axes]])
if len(rows) == 1:
axes = axes.reshape((1, -1))
elif len(cols) == 1:
axes = axes.reshape((-1, 1))
for i in range(len(axes)):
# TODO: add extra event times if needed
axes[i][0].set_ytitle = rows[i] + f' ({meas})'
for j in range(len(axes[i])):
# TODO: only handle the case when row is the signal variable
rsels, csels = rsel_groups[rows[i]], csel_groups[cols[j]]
if rsels is None:
rsels = np.full_like(nonan_sel, 1)
if csels is None:
csels = np.full_like(nonan_sel, 1)
if isinstance(csels, np.ndarray):
sels = csels[nonan_sel]
else:
raise NotImplementedError("Only row can be different signals")
if isinstance(rsels, np.ndarray):
sels = sels & rsels[nonan_sel]
ijk_aligned = k_aligned
else:
ijk_aligned = k_aligned[rsels]
if hue:
in_sigs = [ijk_aligned[hsel_groups[h][nonan_sel]& sels] for h in hues]
else:
in_sigs = [ijk_aligned[sels]]
ax = peristimulus_time_trial_average_plot(in_sigs, time_window,
(behaviors, "time(ms)", "", hues),
ax=axes[i][j])
Ns = [str(isig.shape[0]) for isig in in_sigs]
opt = "(N: " + ",".join(Ns) + ")"
if i == 0:
# TODO: include stats significance and trial N
axes[i][j].set_title(cols[j]+opt)
else:
axes[i][j].set_title(opt, fontsize='x-small')
if ylims is not None:
axes[i][j].set_ylim(ylims[i][j])
axes[i][0].set_ylabel(rows[i] + f' ({meas})')
plt.subplots_adjust(hspace=0.3)
fig.suptitle(f"{effect_arg} effects on {neur_type} {behaviors} phase {fsig}")
fname = os.path.join(subfolder,
f"{neur_type}_{fsig}_{behavior_arg}_{effect_arg}_{animal}_{session}")
#plt.tight_layout()
fig.savefig(fname + '.png')
fig.savefig(fname + '.eps')
plt.close(fig)