forked from liuyuan-pal/Gen6D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
colmap_script.py
128 lines (107 loc) · 4.9 KB
/
colmap_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import logging
import subprocess
import os
from pathlib import Path
import numpy as np
from skimage.io import imsave
from dataset.database import BaseDatabase, get_database_split
from utils.colmap_database import COLMAPDatabase
from utils.read_write_model import CAMERA_MODEL_NAMES
def run_sfm(colmap_path, model_path, database_path, image_dir):
logging.info('Running the triangulation...')
model_path.mkdir(exist_ok=True, parents=True)
cmd = [
str(colmap_path), 'mapper',
'--database_path', str(database_path),
'--image_path', str(image_dir),
'--output_path', str(model_path),
]
logging.info(' '.join(cmd))
subprocess.run(cmd, check=True)
def run_patch_match(colmap_path, sparse_model: Path, image_dir: Path, dense_model: Path):
logging.info('Running patch match...')
assert sparse_model.exists()
dense_model.mkdir(parents=True, exist_ok=True)
cmd = [str(colmap_path), 'image_undistorter', '--input_path', str(sparse_model), '--image_path', str(image_dir), '--output_path', str(dense_model),]
logging.info(' '.join(cmd))
subprocess.run(cmd, check=True)
cmd = [str(colmap_path), 'patch_match_stereo','--workspace_path', str(dense_model),]
logging.info(' '.join(cmd))
subprocess.run(cmd, check=True)
def run_depth_fusion(colmap_path, dense_model: Path, ply_path: Path):
logging.info('Running patch match...')
dense_model.mkdir(parents=True, exist_ok=True)
cmd = [str(colmap_path), 'stereo_fusion',
'--workspace_path', str(dense_model),
'--workspace_format', 'COLMAP',
'--input_type', 'geometric',
'--output_path', str(ply_path),]
logging.info(' '.join(cmd))
subprocess.run(cmd, check=True)
def dump_images(database, ref_ids, image_path: Path):
image_path.mkdir(parents=True, exist_ok=True)
for ref_id in ref_ids:
if (image_path / f'{ref_id}.jpg').exists():
continue
else:
imsave(str(image_path / f'{ref_id}.jpg'),database.get_image(ref_id))
def extract_and_match_sift(colmap_path, database_path, image_dir):
cmd = [
str(colmap_path), 'feature_extractor',
'--database_path', str(database_path),
'--image_path', str(image_dir),
]
logging.info(' '.join(cmd))
subprocess.run(cmd, check=True)
cmd = [
str(colmap_path), 'exhaustive_matcher',
'--database_path', str(database_path),
]
logging.info(' '.join(cmd))
subprocess.run(cmd, check=True)
def create_db_from_database(database, ref_ids, database_path: Path):
if database_path.exists():
logging.warning('Database already exists. we will skip db creation.')
return
db = COLMAPDatabase.connect(database_path)
db.create_tables()
for ri, ref_id in enumerate(ref_ids):
img = database.get_image(ref_id)
h, w = img.shape[:2]
model_id = CAMERA_MODEL_NAMES["SIMPLE_RADIAL"].model_id
db.add_camera(model_id, float(w), float(h), np.asarray([np.sqrt(h**2+w**2), w/2.0, h/2.0, 0.0],np.float64), camera_id=ri+1)
db.add_image(f'{ref_id}.jpg', ri+1, image_id=ri+1)
db.commit()
db.close()
def build_colmap_model_no_pose(database: BaseDatabase, colmap_path='colmap'):
colmap_root = Path('data') / database.database_name / 'colmap'
colmap_root.mkdir(exist_ok=True, parents=True)
image_path = colmap_root / 'images'
database_path = colmap_root / 'database.db'
ref_ids, _ = get_database_split(database, 'all')
dump_images(database, ref_ids, image_path)
create_db_from_database(database, ref_ids, database_path)
extract_and_match_sift(colmap_path, database_path, image_path)
sparse_model_path = colmap_root / f'sparse'
dense_model_path = colmap_root / f'dense'
ply_path = colmap_root / f'pointcloud.ply'
run_sfm(colmap_path, sparse_model_path, database_path, image_path)
run_patch_match(colmap_path, sparse_model_path / '0', image_path, dense_model_path)
run_depth_fusion(colmap_path, dense_model_path, ply_path)
def clean_colmap_project(database, split_name):
extractor_name = 'colmap_default'
matcher_name = 'colmap_default'
colmap_root = Path('data/colmap_projects') / database.database_name / f'colmap-{split_name}' / f'{extractor_name}-{matcher_name}'
image_path = colmap_root / 'images'
database_path = colmap_root / 'database.db'
empty_model_path = colmap_root / 'empty'
sparse_model_path = colmap_root / f'sparse'
dense_model_path = colmap_root / f'dense'
os.system(f'rm {str(sparse_model_path)} -r')
os.system(f'rm {str(database_path)} -r')
os.system(f'rm {str(image_path)} -r')
os.system(f'rm {str(empty_model_path)} -r')
os.system(f'rm {str(dense_model_path / "images")} -r')
os.system(f'rm {str(dense_model_path / "sparse")} -r')
os.system(f'rm {str(dense_model_path / "stereo" / "normal_maps")} -r')
os.system(f'rm {str(dense_model_path / "stereo" / "depth_maps")}/*.photometric.bin')