-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
249 lines (199 loc) · 8.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import sys
from random import randint
import math
import pygame as pg
import numpy
from game_objects.player import Player
from game_objects.aiPlayer import aiPlayer
from game_objects.trash import Trash
from map import map
from map import map_utils
from settings import *
from path_search_algorthms import bfs
from path_search_algorthms import a_star_controller, a_star
from decision_tree import decisionTree
from NeuralNetwork import prediction
from game_objects.trash import Trash
from genetic_algorithm import TSP
from game_objects import aiPlayer
import itertools
def getTree():
tree = decisionTree.tree()
decisionTree.tree_as_txt(tree)
# decisionTree.tree_to_png(tree)
decisionTree.tree_to_structure(tree)
drzewo = decisionTree.tree_from_structure('./decision_tree/tree_model')
# print("Dla losowych danych predykcja czy wziąć kosz to: ")
# dec = decisionTree.decision(drzewo, *(4,1,1,1))
# print('---')
# print(f"decision is{dec}")
# print('---')
return drzewo
class Game():
def __init__(self):
pg.init()
pg.font.init()
self.clock = pg.time.Clock()
self.dt = self.clock.tick(FPS) / 333.0
self.screen = pg.display.set_mode((WIDTH, HEIGHT))
pg.display.set_caption("Trashmaster")
self.load_data()
self.init_game()
self.t = aiPlayer.aiPlayer(self.player, game=self)
def init_game(self):
# initialize all variables and do all the setup for a new game
self.text_display = ''
# sprite groups and map array for calculations
(self.roadTiles, self.wallTiles, self.trashbinTiles), self.mapArray = map.get_tiles()
# save current map
file = open('last_map.nparr', 'wb')
numpy.save(file, self.mapArray, allow_pickle=True)
file.close
self.trashDisplay = pg.sprite.Group()
self.agentSprites = pg.sprite.Group()
# player obj
self.player = Player(self, 32, 32)
# camera obj
self.camera = map_utils.Camera(MAP_WIDTH_PX, MAP_HEIGHT_PX)
# other
self.debug_mode = False
def init_bfs(self):
start_node = (0, 0)
target_node = (18, 18)
find_path = bfs.BreadthSearchAlgorithm(start_node, target_node, self.mapArray)
path = find_path.bfs()
# print(path)
realPath = []
nextNode = target_node
for i in range(len(path) - 1, 0, -1):
node = path[i]
if node[0] == nextNode:
realPath.insert(0, node[0])
nextNode = node[1]
print(realPath)
def init_decision_tree(self):
# logika pracy z drzewem
self.positive_decision = []
self.negative_decision = []
for i in self.trashbinTiles:
atrrs_container = i.get_attributes()
x, y = i.get_coords()
dec = decisionTree.decision(getTree(), *atrrs_container)
if dec[0] == 1:
self.positive_decision.append(i) # zmiana po to by losowało wszystkie smietniki a nie poprawne tylko, zeby ladniej bylo widac algorytm genetyczny
else:
self.negative_decision.append(i)
print('positive actions')
print(len(self.positive_decision))
# print('positive actions')
# for i in self.positive_actions:
# print('----')
# print(i)
# print('----')
self.draw()
def decsion_tree_move(self):
for i in range(0,len(self.positive_decision)):
# print(i.get_coords())
print('action')
temp_tsp = str(self.tsp_list[i])
temp_tsp = temp_tsp.strip("()")
temp_tsp = temp_tsp.split(",")
trash_x = int(temp_tsp[0])
trash_y = int(temp_tsp[1])
print(trash_x, trash_y)
action = a_star_controller.get_actions_for_target_coords(trash_x, trash_y, self)
print(action)
self.t.startAiController(action)
print('')
print('--rozpoczecie sortowania smietnika--')
dir = "./resources/trash_dataset/test/all"
files = os.listdir(dir)
for j in range(0, 10):
random = randint(0, 48)
file = files[random]
result = prediction.getPrediction(dir + '/' + file, 'trained_nn_20.pth')
img = pg.image.load(dir + '/' + file).convert_alpha()
img = pg.transform.scale(img, (128, 128))
offset_x, offset_y = self.camera.offset()
trash = Trash(img, math.floor(-offset_x * TILESIZE), math.floor(-offset_y * TILESIZE), 128, 128)
self.trashDisplay.empty()
self.trashDisplay.add(trash)
self.text_display = result
self.draw()
pg.time.wait(100)
self.text_display = ''
self.trashDisplay.empty()
self.draw()
# print(self.positive_actions[0])
def init_TSP(self):
city_list =[]
for i in self.positive_decision:
trash_x, trash_y = i.get_coords()
city_list.append(TSP.City(x=trash_x, y=trash_y, array=self.mapArray))
self.tsp_list = TSP.geneticAlgorithmPlot(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=500, array=self.mapArray)
print(self.tsp_list)
def load_data(self):
game_folder = os.path.dirname(__file__)
img_folder = os.path.join(game_folder, 'resources/textures')
self.player_img = pg.image.load(os.path.join(img_folder, PLAYER_IMG)).convert_alpha()
self.player_img = pg.transform.scale(self.player_img, (PLAYER_WIDTH, PLAYER_HEIGHT))
def run(self):
# game loop - set self.playing = False to end the game
self.playing = True
self.init_decision_tree()
self.init_TSP()
self.decsion_tree_move()
while self.playing:
self.dt = self.clock.tick(FPS) / 1000.0
self.events()
self.update()
self.draw()
def quit(self):
pg.quit()
sys.exit()
def update(self):
# update portion of the game loop
self.agentSprites.update()
self.camera.update(self.player)
# pygame.display.update()
def draw(self):
# display fps as window title
pg.display.set_caption("{:.2f}".format(self.clock.get_fps()))
# rerender map
map.render_tiles(self.roadTiles, self.screen, self.camera)
map.render_tiles(self.wallTiles, self.screen, self.camera, self.debug_mode)
map.render_tiles(self.trashbinTiles, self.screen, self.camera)
map.render_tiles(self.trashDisplay, self.screen, self.camera)
# draw text
text_surface = pg.font.SysFont('Comic Sans MS', 30).render(self.text_display, False, (255, 255, 255))
self.screen.blit(text_surface, (0, 128))
# rerender additional sprites
for sprite in self.agentSprites:
self.screen.blit(sprite.image, self.camera.apply(sprite))
if self.debug_mode:
pg.draw.rect(self.screen, CYAN, self.camera.apply_rect(sprite.hit_rect), 1)
# self.player.hud_group.draw(self.screen)
# finally update screen
pg.display.flip()
def events(self):
for event in pg.event.get():
if event.type == pg.QUIT:
self.quit()
if event.type == pg.KEYDOWN:
if event.key == pg.K_ESCAPE:
self.quit()
if event.key == pg.K_h:
self.debug_mode = not self.debug_mode
if event.type == pg.MOUSEBUTTONUP:
pos = pg.mouse.get_pos()
offset_x, offset_y = self.camera.offset()
clicked_coords = [math.floor(pos[0] / TILESIZE) - offset_x, math.floor(pos[1] / TILESIZE) - offset_y]
actions = a_star_controller.get_actions_by_coords(clicked_coords[0], clicked_coords[1], self)
if (actions != None):
self.t.startAiController(actions)
# create the game object
if __name__ == "__main__":
g = Game()
g.run()
g.show_go_screen()