Skip to content

Latest commit

 

History

History
80 lines (61 loc) · 5.18 KB

README.md

File metadata and controls

80 lines (61 loc) · 5.18 KB

OLMo-core

Building blocks for OLMo modeling and training

Examples || Docs || PyPI || Beaker Images || License || Changelog

Installation

First install PyTorch according to the instructions specific to your operating system and hardware. Then you can install from PyPI with:

pip install ai2-olmo-core

There are a number of optional dependencies that must be installed to use certain functionality as well, including:

  • flash-attn for flash attention and certain other fused operations.
  • torchao for float8 training.
  • megablocks for mixture-of-experts (MoE) models.

API stability

Even though this library is under rapid development we are trying hard to adhere to Semantic Versioning with every release except for features that are explicitly marked as beta features. Those features will be tagged like this in the API docs:

image

Official training scripts

Official training scripts for various model sizes can be found in src/scripts/train/. To see the exact usage for each script, run the script without any arguments.

Throughput numbers from these scripts with various different configuration settings are reported below, measured on a cluster with NVIDIA H100 GPUs.

Model size Model arch.   Context length Precision Throughput1 Training   script Commandline overrides                                   
1B OLMo-1124 4096 BF16 55,000 TPS OLMo2-1B.py
4096 BF16/FP82 65,000 TPS OLMo2-1B.py --model.float8_config.enabled=true
7B OLMo-1124 4096 BF16 10,000 TPS OLMo2-7B.py
4096 BF16/FP8 13,000 TPS OLMo2-7B.py --model.float8_config.enabled=true
8B Llama 4096 BF16 9,500 TPS Llama3-8B.py
4096 BF16/FP8 12,500 TPS Llama3-8B.py --model.float8_config.enabled=true
13B OLMo-1124 4096 BF16 4,600 TPS OLMo2-13B.py
4096 BF16/FP8 5,500 TPS OLMo2-13B.py --model.float8_config.enabled=true

Development

After cloning OLMo-core and setting up a Python virtual environment, install the codebase from source with:

pip install -e .[all]

The Python library source code is located in src/olmo_core. The corresponding tests are located in src/test. The library docs are located in docs. You can build the docs locally with make docs.

Code checks:

  • We use pytest to run tests. You can run all tests with pytest -v src/test. You can also point pytest at a specific test file to run it individually.
  • We use isort and black for code formatting. Ideally you should integrate these into your editor, but you can also run them manually or configure them with a pre-commit hook. To validate that all files are formatted correctly, run make style-check.
  • We use ruff as our primary linter. You can run it with make lint-check.
  • We use mypy as our type checker. You can run it with make type-check.

Citing

@article{OLMo,
  title={OLMo: Accelerating the Science of Language Models},
  author={Dirk Groeneveld and Iz Beltagy and Pete Walsh and Akshita Bhagia and Rodney Kinney and Oyvind Tafjord and A. Jha and Hamish Ivison and Ian Magnusson and Yizhong Wang and Shane Arora and David Atkinson and Russell Authur and Khyathi Raghavi Chandu and Arman Cohan and Jennifer Dumas and Yanai Elazar and Yuling Gu and Jack Hessel and Tushar Khot and William Merrill and Jacob Daniel Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Valentina Pyatkin and Abhilasha Ravichander and Dustin Schwenk and Saurabh Shah and Will Smith and Emma Strubell and Nishant Subramani and Mitchell Wortsman and Pradeep Dasigi and Nathan Lambert and Kyle Richardson and Luke Zettlemoyer and Jesse Dodge and Kyle Lo and Luca Soldaini and Noah A. Smith and Hanna Hajishirzi},
  year={2024},
  url={https://api.semanticscholar.org/CorpusID:267365485},
  journal={arXiv preprint},
}

Footnotes

  1. Throughput reported in tokens per second per device.

  2. In this setup most matrix multiplications are computed in float8, everything else is in bfloat16.