forked from andreeadeac22/graph_coattention
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.py
257 lines (188 loc) · 7.82 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import numpy as np
import torch
import torch.nn as nn
class RadialBasisFunctionExpansion(nn.Module):
def __init__(self, n_bin, low=0, high=20):
super().__init__()
assert high > low
self.n_center = n_bin
self.gap = (high - low) / n_bin
self.centers = nn.Parameter(
torch.FloatTensor(np.linspace(low, high, n_bin)).view(1, -1))
def forward(self, dist):
'''
input: dist: [(b*n_v*n_v) x 1]
output: rbf: [(b*n_v*n_v) x n_bin]
'''
rbf = dist.unsqueeze(-1) - self.centers # [(b*n_v*n_v) x n_centers]
rbf = torch.exp(-(rbf.pow(2)) / self.gap)
return rbf
def segment_max(logit, n_seg, seg_i, idx_j):
max_seg_numel = idx_j.max().item() + 1
seg_max = logit.new_full((n_seg, max_seg_numel), -np.inf)
seg_max = seg_max.index_put_((seg_i, idx_j), logit).max(dim=1)[0]
return seg_max[seg_i]
def segment_sum(logit, n_seg, seg_i):
norm = logit.new_zeros(n_seg).index_add(0, seg_i, logit)
return norm[seg_i]
def segment_softmax(logit, n_seg, seg_i, idx_j, temperature):
logit_max = segment_max(logit, n_seg, seg_i, idx_j).detach()
logit = torch.exp((logit - logit_max) / temperature)
logit_norm = segment_sum(logit, n_seg, seg_i)
prob = logit / (logit_norm + 1e-8)
return prob
def segment_multihead_expand(seg_i, n_seg, n_head):
i_head_shift = n_seg * seg_i.new_tensor(torch.arange(n_head))
seg_i = (seg_i.view(-1, 1) + i_head_shift.view(1, -1)).view(-1)
return seg_i
class CoAttention(nn.Module):
def __init__(self, d_in, d_out, n_head=1, dropout=0.1):
super().__init__()
self.temperature = np.sqrt(d_in)
self.n_head = n_head
self.multi_head = self.n_head > 1
self.key_proj = nn.Linear(d_in, d_in * n_head, bias=False)
self.val_proj = nn.Linear(d_in, d_in * n_head, bias=False)
nn.init.xavier_normal_(self.key_proj.weight)
nn.init.xavier_normal_(self.val_proj.weight)
self.attn_drop = nn.Dropout(p=dropout)
self.out_proj = nn.Sequential(
nn.Linear(d_in * n_head, d_out),
nn.LeakyReLU(), nn.Dropout(p=dropout))
def forward(self, node1, seg_i1, idx_j1, node2, seg_i2, idx_j2, entropy=[]):
print("node1.shape ", node1.shape)
print("node2.shape ", node2.shape)
d_h = node1.size(1)
n_seg1 = node1.size(0)
n_seg2 = node2.size(0)
# Copy center for attention key
node1_ctr = self.key_proj(node1).index_select(0, seg_i1)
node2_ctr = self.key_proj(node2).index_select(0, seg_i2)
# Copy neighbor for attention value
node1_nbr = self.val_proj(node2).index_select(0, seg_i2) # idx_j1 == seg_i2
node2_nbr = self.val_proj(node1).index_select(0, seg_i1) # idx_j2 == seg_i1
arg_i1 = None
arg_i2 = None
if self.multi_head:
# prepare copied and shifted index tensors
seg_i1 = segment_multihead_expand(seg_i1, n_seg1, self.n_head)
seg_i2 = segment_multihead_expand(seg_i2, n_seg2, self.n_head)
idx_j1 = idx_j1.unsqueeze(1).expand(-1, self.n_head).contiguous().view(-1)
idx_j2 = idx_j2.unsqueeze(1).expand(-1, self.n_head).contiguous().view(-1)
# prepare for the final multi-head concatenation
arg_i1 = segment_multihead_expand(
seg_i1.new_tensor(np.arange(n_seg1)), n_seg1, self.n_head)
arg_i2 = segment_multihead_expand(
seg_i2.new_tensor(np.arange(n_seg2)), n_seg2, self.n_head)
# pile up as regular input
node1_ctr = node1_ctr.view(-1, d_h)
node2_ctr = node2_ctr.view(-1, d_h)
node1_nbr = node1_nbr.view(-1, d_h)
node2_nbr = node2_nbr.view(-1, d_h)
# new numbers of segments
n_seg1 = n_seg1 * self.n_head
n_seg2 = n_seg2 * self.n_head
translation = (node1_ctr * node2_ctr).sum(1)
# TODO!! Remove this while training, this is just for entropy.
#translation = torch.ones_like(translation)
# Calculate attention weight as edges between two graphs
node1_edge = self.attn_drop(segment_softmax(
translation, n_seg1, seg_i1, idx_j1, self.temperature))
node2_edge = self.attn_drop(segment_softmax(
translation, n_seg2, seg_i2, idx_j2, self.temperature))
print("before node1 shape", node1_edge.shape)
node1_edge = node1_edge.view(-1, 1)
node2_edge = node2_edge.view(-1, 1)
print("after node1 shape", node1_edge.shape)
# Weighted sum
msg1 = node1.new_zeros((n_seg1, d_h)).index_add(0, seg_i1, node1_edge * node1_nbr)
msg2 = node2.new_zeros((n_seg2, d_h)).index_add(0, seg_i2, node2_edge * node2_nbr)
# Entropy computation
#ent1 = node1.new_zeros((n_seg1, 1)).index_add(0, seg_i1, torch.sum(node1_edge * torch.log(node1_edge + 1e-7), -1))
#ent2 = node2.new_zeros((n_seg2, 1)).index_add(0, seg_i2, torch.sum(node2_edge * torch.log(node2_edge + 1e-7), -1))
#entropy.append(ent1)
#entropy.append(ent2)
if self.multi_head:
msg1 = msg1[arg_i1].view(-1, d_h * self.n_head)
msg2 = msg2[arg_i2].view(-1, d_h * self.n_head)
msg1 = self.out_proj(msg1)
msg2 = self.out_proj(msg2)
return msg1, msg2, node1_edge, node2_edge
class MessagePassing(nn.Module):
def __init__(self, d_node, d_edge, d_hid, dropout=0.1):
super().__init__()
dropout = nn.Dropout(p=dropout)
self.node_proj = nn.Sequential(
nn.Linear(d_node, d_hid, bias=False), dropout)
self.edge_proj = nn.Sequential(
nn.Linear(d_edge, d_hid), nn.LeakyReLU(), dropout,
nn.Linear(d_hid, d_hid), nn.LeakyReLU(), dropout)
self.msg_proj = nn.Sequential(
nn.Linear(d_hid, d_hid), nn.LeakyReLU(), dropout,
nn.Linear(d_hid, d_hid), dropout)
def forward(self, node, edge, seg_i, idx_j):
edge = self.edge_proj(edge)
msg = self.node_proj(node)
msg = self.message_composing(msg, edge, idx_j)
msg = self.message_aggregation(node, msg, seg_i)
return msg
def message_composing(self, msg, edge, idx_j):
msg = msg.index_select(0, idx_j) # neighbors
msg = msg * edge # element-wise multiplication composition
return msg
def message_aggregation(self, node, msg, seg_i):
msg = torch.zeros_like(node).index_add(0, seg_i, msg) # sum over messages
return msg
class CoAttentionMessagePassingNetwork(nn.Module):
def __init__(self, d_hid, d_readout, n_prop_step, n_head=1, dropout=0.1, update_method='res'):
super().__init__()
self.n_prop_step = n_prop_step
if update_method == 'res':
x_d_node = lambda step_i: 1
self.update_fn = lambda x, y, z: x + y + z
elif update_method == 'den':
x_d_node = lambda step_i: 1 + 2 * step_i
self.update_fn = lambda x, y, z: torch.cat([x, y, z], -1)
else:
raise NotImplementedError
self.mps = nn.ModuleList([
MessagePassing(
d_node=d_hid * x_d_node(step_i),
d_edge=d_hid, d_hid=d_hid, dropout=dropout)
for step_i in range(n_prop_step)])
self.coats = nn.ModuleList([
CoAttention(
d_in=d_hid * x_d_node(step_i),
d_out=d_hid, n_head=n_head, dropout=dropout)
for step_i in range(n_prop_step)])
self.lns = nn.ModuleList([
nn.LayerNorm(d_hid * x_d_node(step_i))
for step_i in range(n_prop_step)])
self.pre_readout_proj = nn.Sequential(
nn.Linear(d_hid * x_d_node(n_prop_step), d_readout),
nn.LeakyReLU())
def forward(
self,
seg_g1, node1, edge1, inn_seg_i1, inn_idx_j1, out_seg_i1, out_idx_j1,
seg_g2, node2, edge2, inn_seg_i2, inn_idx_j2, out_seg_i2, out_idx_j2,
entropies=[]):
for step_i in range(self.n_prop_step):
#if step_i >= len(entropies):
# entropies.append([])
inner_msg1 = self.mps[step_i](node1, edge1, inn_seg_i1, inn_idx_j1)
inner_msg2 = self.mps[step_i](node2, edge2, inn_seg_i2, inn_idx_j2)
outer_msg1, outer_msg2, attn1, attn2 = self.coats[step_i](
node1, out_seg_i1, out_idx_j1,
node2, out_seg_i2, out_idx_j2, [])
# node2, out_seg_i2, out_idx_j2, entropies[step_i])
node1 = self.lns[step_i](self.update_fn(node1, inner_msg1, outer_msg1))
node2 = self.lns[step_i](self.update_fn(node2, inner_msg2, outer_msg2))
g1_vec = self.readout(node1, seg_g1)
g2_vec = self.readout(node2, seg_g2)
return g1_vec, g2_vec, attn1, attn2
def readout(self, node, seg_g):
sz_b = seg_g.max() + 1
node = self.pre_readout_proj(node)
d_h = node.size(1)
encv = node.new_zeros((sz_b, d_h)).index_add(0, seg_g, node)
return encv