Skip to content

Latest commit

 

History

History
39 lines (29 loc) · 1004 Bytes

README.md

File metadata and controls

39 lines (29 loc) · 1004 Bytes

mlflow-examples - xgboost

Overview

Training

python train.py --experiment_name xgboost --estimators 20000 --max_depth 5 
mlflow run . --experiment_name xgboost -P estimators=20000 -P max_depth=5 

Predictions

Score with mlflow.xgboost.load_model and mlflow.pyfunc.load_model. You can either use a runs or models URI.

python predict.py runs:/7e674524514846799310c41f10d6b99d/xgboost-model
python predict.py models:/xgboost_wine/production
=== mlflow.xgboost.load_model
model: <xgboost.core.Booster object at 0x113678b70>
predictions: [5.3752966 5.2566967 5.4596467 ... 5.347645  6.682991  6.0259304]

=== mlflow.pyfunc.load_model
model: <mlflow.xgboost._XGBModelWrapper object at 0x10e9eb198>
predictions: [5.3752966 5.2566967 5.4596467 ... 5.347645  6.682991  6.0259304]