forked from kstaats/karoo_gp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
karoo_gp.py
257 lines (206 loc) · 12.7 KB
/
karoo_gp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Karoo GP (desktop + server combined)
# Use Genetic Programming for Classification and Symbolic Regression
# by Kai Staats, MSc; see LICENSE.md
# version 2.1
'''
A word to the newbie, expert, and brave--
Even if you are highly experienced in Genetic Programming, it is recommended that you review the 'Karoo User Guide'
before running this application. While your computer will not burst into flames nor will the sun collapse into a black
hole if you do not, you will likely find more enjoyment of this particular flavour of GP with a little understanding
of its intent and design.
Without any command line arguments, Karoo GP relies upon user settings and the datasets located in karoo_gp/files/.
$ python karoo_gp_main.py
If you include the path to an external dataset, it will auto-load at launch:
$ python karoo_gp_main.py /[path]/[to_your]/[filename].csv
If you include one or more additional arguments, they will override the default values, as follows:
-ker [r,c,m] fitness function: (r)egression, (c)lassification, or (m)atching
-typ [f,g,r] Tree type: (f)ull, (g)row, or (r)amped half/half
-bas [3...10] maximum Tree depth for initial population
-max [3...10] maximum Tree depth for entire run
-min [3 to 2^(bas +1) - 1] minimum number of nodes
-pop [10...1000] number of trees in each generational population
-gen [1...100] number of generations
-tor [7 per 100] number of trees selected for tournament
-evr [0.0...1.0] decimal percent of pop generated through Reproduction
-evp [0.0...1.0] decimal percent of pop generated through Point Mutation
-evb [0.0...1.0] decimal percent of pop generated through Branch Mutation
-evc [0.0...1.0] decimal percent of pop generated through Crossover
If you include any of the above flags, then you *must* also include a flag to load an external dataset.
-fil [path]/[to]/[data].csv an external dataset
An example is given, as follows:
$ python karoo_gp_server.py -ker c -typ r -bas 4 -fil [path]/[to]/[data].csv
'''
import os
import sys; sys.path.append('modules/') # add directory 'modules' to the current path
import argparse
import karoo_gp_base_class; gp = karoo_gp_base_class.Base_GP()
os.system('clear')
print '\n\033[36m\033[1m'
print '\t ** ** ****** ***** ****** ****** ****** ******'
print '\t ** ** ** ** ** ** ** ** ** ** ** ** **'
print '\t ** ** ** ** ** ** ** ** ** ** ** ** **'
print '\t **** ******** ****** ** ** ** ** ** *** *******'
print '\t ** ** ** ** ** ** ** ** ** ** ** ** **'
print '\t ** ** ** ** ** ** ** ** ** ** ** ** **'
print '\t ** ** ** ** ** ** ** ** ** ** ** ** **'
print '\t ** ** ** ** ** ** ****** ****** ****** **'
print '\033[0;0m'
print '\t\033[36m Genetic Programming in Python - by Kai Staats, version 2.1\033[0;0m'
print ''
#++++++++++++++++++++++++++++++++++++++++++
# User Interface for Configuation |
#++++++++++++++++++++++++++++++++++++++++++
if len(sys.argv) < 3: # either no command line argument (1) or a filename (2) is provided
while True:
try:
query = raw_input('\t Select (c)lassification, (r)egression, (m)atching, or (p)lay (default m): ')
if query not in ['c','r','m','p','']: raise ValueError()
else: kernel = query or 'm'; break
except ValueError: print '\t\033[32m Select from the options given. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
if kernel == 'p': # play mode
while True:
try:
query = raw_input('\t Select (f)ull or (g)row (default g): ')
if query not in ['f','g','']: raise ValueError()
else: tree_type = query or 'f'; break
except ValueError: print '\t\033[32m Select from the options given. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
while True:
try:
query = raw_input('\t Enter the depth of the Tree (default 1): ')
if query not in str(range(1,11)) or query == '0': raise ValueError()
elif query == '': tree_depth_base = 1; break
else: tree_depth_base = int(query); break
except ValueError: print '\t\033[32m Enter a number from 1 including 10. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
tree_depth_max = tree_depth_base
tree_depth_min = 3
tree_pop_max = 1
gen_max = 1
tourn_size = 0
display = 'm'
# evolve_repro, evolve_point, evolve_branch, evolve_cross, tourn_size, precision, filename are not required
else: # if any other kernel is selected
while True:
try:
query = raw_input('\t Select (f)ull, (g)row, or (r)amped 50/50 method (default r): ')
if query not in ['f','g','r','']: raise ValueError()
else: tree_type = query or 'r'; break
except ValueError: print '\t\033[32m Select from the options given. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
while True:
try:
query = raw_input('\t Enter depth of the \033[3minitial\033[0;0m population of Trees (default 3): ')
if query not in str(range(1,11)) or query == '0': raise ValueError()
elif query == '': tree_depth_base = 3; break
else: tree_depth_base = int(query); break
except ValueError: print '\t\033[32m Enter a number from 1 including 10. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
while True:
try:
query = raw_input('\t Enter maximum Tree depth (default %s): ' %str(tree_depth_base))
if query not in str(range(tree_depth_base,11)) or query == '0': raise ValueError()
elif query == '': tree_depth_max = tree_depth_base; break
else: tree_depth_max = int(query); break
except ValueError: print '\t\033[32m Enter a number > or = the initial Tree depth. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
max_nodes = 2**(tree_depth_base+1)-1 # calc the max number of nodes for the given depth
while True:
try:
query = raw_input('\t Enter minimum number of nodes for any given Tree (default 3; max %s): ' %str(max_nodes))
if query not in str(range(3,max_nodes + 1)) or query == '0' or query == '1' or query == '2': raise ValueError()
elif query == '': tree_depth_min = 3; break
else: tree_depth_min = int(query); break
except ValueError: print '\t\033[32m Enter a number from 3 including %s. Try again ...\n\033[0;0m' %str(max_nodes)
except KeyboardInterrupt: sys.exit()
#while True:
#try:
#swim = raw_input('\t Select (p)artial or (f)ull operator inclusion (default p): ')
#if swim not in ['p','f','']: raise ValueError()
#swim = swim or 'p'; break
#except ValueError: print '\t\033[32m Select from the options given. Try again ...\n\033[0;0m'
#except KeyboardInterrupt: sys.exit()
while True:
try:
query = raw_input('\t Enter number of Trees in each population (default 100): ')
if query not in str(range(1,1001)) or query == '0': raise ValueError()
elif query == '': tree_pop_max = 100; break
else: tree_pop_max = int(query); break
except ValueError: print '\t\033[32m Enter a number from 1 including 1000. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
# calculate the tournament size
tourn_size = int(tree_pop_max * 0.07) # default 7% can be changed by selecting (g)eneration and then 'ts'
if tourn_size < 2: tourn_size = 2 # forces some diversity for small populations
if tree_pop_max == 1: tourn_size = 1 # in theory, supports the evolution of a single Tree - NEED TO FIX 2018 04/19
while True:
try:
query = raw_input('\t Enter max number of generations (default 10): ')
if query not in str(range(1,101)) or query == '0': raise ValueError()
elif query == '': gen_max = 10; break
gen_max = int(query); break
except ValueError: print '\t\033[32m Enter a number from 1 including 100. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
if gen_max > 1:
while True:
try:
query = raw_input('\t Display (i)nteractive, (g)eneration, (m)iminal, (s)ilent, or (d)e(b)ug (default m): ')
if query not in ['i','g','m','s','db','']: raise ValueError()
display = query or 'm'; break
except ValueError: print '\t\033[32m Select from the options given. Try again ...\n\033[0;0m'
except KeyboardInterrupt: sys.exit()
else: display = 's' # display mode is not used, but a value must be passed
### additional configuration parameters ###
evolve_repro = int(0.1 * tree_pop_max) # quantity of a population generated through Reproduction
evolve_point = int(0.0 * tree_pop_max) # quantity of a population generated through Point Mutation
evolve_branch = int(0.2 * tree_pop_max) # quantity of a population generated through Branch Mutation
evolve_cross = int(0.7 * tree_pop_max) # quantity of a population generated through Crossover
filename = '' # not required unless an external file is referenced
precision = 6 # number of floating points for the round function in 'fx_fitness_eval'
swim = 'p' # require (p)artial or (f)ull set of features (operators) for each Tree entering the gene_pool
mode = 'd' # pause at the (d)esktop when complete, awaiting further user interaction; or terminate in (s)erver mode
#++++++++++++++++++++++++++++++++++++++++++
# Command Line for Configuation |
#++++++++++++++++++++++++++++++++++++++++++
else: # two or more command line arguments provided
ap = argparse.ArgumentParser(description = 'Karoo GP Server')
ap.add_argument('-ker', action = 'store', dest = 'kernel', default = 'c', help = '[c,r,m] fitness function: (r)egression, (c)lassification, or (m)atching')
ap.add_argument('-typ', action = 'store', dest = 'type', default = 'r', help = '[f,g,r] Tree type: (f)ull, (g)row, or (r)amped half/half')
ap.add_argument('-bas', action = 'store', dest = 'depth_base', default = 4, help = '[3...10] maximum Tree depth for the initial population')
ap.add_argument('-max', action = 'store', dest = 'depth_max', default = 4, help = '[3...10] maximum Tree depth for the entire run')
ap.add_argument('-min', action = 'store', dest = 'depth_min', default = 3, help = 'minimum nodes, from 3 to 2^(base_depth +1) - 1')
ap.add_argument('-pop', action = 'store', dest = 'pop_max', default = 100, help = '[10...1000] number of trees per generation')
ap.add_argument('-gen', action = 'store', dest = 'gen_max', default = 10, help = '[1...100] number of generations')
ap.add_argument('-tor', action = 'store', dest = 'tor_size', default = 7, help = '[7 for each 100] recommended tournament size')
ap.add_argument('-evr', action = 'store', dest = 'evo_r', default = 0.1, help = '[0.0-1.0] decimal percent of pop generated through Reproduction')
ap.add_argument('-evp', action = 'store', dest = 'evo_p', default = 0.0, help = '[0.0-1.0] decimal percent of pop generated through Point Mutation')
ap.add_argument('-evb', action = 'store', dest = 'evo_b', default = 0.2, help = '[0.0-1.0] decimal percent of pop generated through Branch Mutation')
ap.add_argument('-evc', action = 'store', dest = 'evo_c', default = 0.7, help = '[0.0-1.0] decimal percent of pop generated through Crossover')
ap.add_argument('-fil', action = 'store', dest = 'filename', default = '', help = '/path/to_your/[data].csv')
args = ap.parse_args()
# pass the argparse defaults and/or user inputs to the required variables
kernel = str(args.kernel)
tree_type = str(args.type)
tree_depth_base = int(args.depth_base)
tree_depth_max = int(args.depth_max)
tree_depth_min = int(args.depth_min)
tree_pop_max = int(args.pop_max)
gen_max = int(args.gen_max)
tourn_size = int(args.tor_size)
evolve_repro = int(float(args.evo_r) * tree_pop_max)
evolve_point = int(float(args.evo_p) * tree_pop_max)
evolve_branch = int(float(args.evo_b) * tree_pop_max)
evolve_cross = int(float(args.evo_c) * tree_pop_max)
filename = str(args.filename)
display = 's' # display mode is set to (s)ilent
precision = 6 # number of floating points for the round function in 'fx_fitness_eval'
swim = 'p' # require (p)artial or (f)ull set of features (operators) for each Tree entering the gene_pool
mode = 's' # pause at the (d)esktop when complete, awaiting further user interaction; or terminate in (s)erver mode
#++++++++++++++++++++++++++++++++++++++++++
# Conduct the GP run |
#++++++++++++++++++++++++++++++++++++++++++
gp.fx_karoo_gp(kernel, tree_type, tree_depth_base, tree_depth_max, tree_depth_min, tree_pop_max, gen_max, tourn_size, filename, evolve_repro, evolve_point, evolve_branch, evolve_cross, display, precision, swim, mode)
print '\n\033[3m "It is not the strongest of the species that survive, nor the most intelligent,\033[0;0m'
print '\033[3m but the one most responsive to change."\033[0;0m --Charles Darwin\n'
print '\033[3m Congrats!\033[0;0m Your Karoo GP run is complete.\n'
sys.exit()