forked from soulmachine/machine-learning-cheat-sheet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
notation.tex
188 lines (173 loc) · 9.71 KB
/
notation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
\Extrachap{Notation}
\label{sec:Notation}
\section*{Introduction}
It is very difficult to come up with a single, consistent notation to cover the wide variety of
data, models and algorithms that we discuss. Furthermore, conventions difer between machine
learning and statistics, and between different books and papers. Nevertheless, we have tried
to be as consistent as possible. Below we summarize most of the notation used in this book,
although individual sections may introduce new notation. Note also that the same symbol may
have different meanings depending on the context, although we try to avoid this where possible.
\section*{General math notation}
\begin{longtable}{ll}
\hline\noalign{\smallskip}
\textbf{Symbol} & \textbf{Meaning} \\
\noalign{\smallskip}\hline\noalign{\smallskip}
$\lfloor x \rfloor$ & Floor of $x$, i.e., round down to nearest integer\\
$\lceil x \rceil$ & Ceiling of $x$, i.e., round up to nearest integer\\
$\vec{x} \otimes \vec{y}$ & Convolution of $\vec{x}$ and $\vec{y}$\\
$\vec{x} \odot \vec{y}$ & Hadamard (elementwise) product of $\vec{x}$ and $\vec{y}$\\
$a \wedge b$ & logical AND\\
$a \vee b$ & logical OR\\
$\neg a$ & logical NOT\\
$\mathbb{I}(x)$ & Indicator function, $\mathbb{I}(x)=1$ if x is true, else $\mathbb{I}(x)=0$\\
$\infty$ & Infinity\\
$\rightarrow$ & Tends towards, e.g., $n \rightarrow \infty$\\
$\propto$ &Proportional to, so $y = ax$ can be written as $y \propto x$\\
$\abs{x}$ & Absolute value\\
$\abs{\mathcal{S}}$ & Size (cardinality) of a set\\
$n!$ & Factorial function\\
$\nabla$ & Vector of first derivatives\\
$\nabla^2$ & Hessian matrix of second derivatives\\
$\triangleq$ & Defined as\\
$O(\cdot)$ & Big-O: roughly means order of magnitude\\
$\mathbb{R}$ & The real numbers\\
$1:n$ & Range (Matlab convention): $1:n = {1, 2,...,n}$\\
$\approx$ & Approximately equal to\\
$\arg\max\limits_x f(x)$ & Argmax: the value $x$ that maximizes $f$\\
$B(a,b)$ & Beta function, $B(a,b)=\dfrac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$\\
$B(\vec{\alpha})$ & Multivariate beta function, $\dfrac{\prod\limits_k \Gamma(\alpha_k)}{\Gamma(\sum\limits_k \alpha_k)}$\\
$\binom{n}{k}$ & $n$ choose $k$ , equal to $n!/(k!(n−k )!)$\\
$\delta(x)$ & Dirac delta function,$\delta(x)=\infty$ if $x=0$, else $\delta(x)=0$\\
$\exp(x)$ & Exponential function $e^x$\\
$\Gamma(x)$ & Gamma function, $\Gamma(x)=\int_0^\infty u^{x-1}e^{-u}\mathrm{d}u$\\
$\Psi(x)$ & Digamma function,$Psi(x)=\dfrac{d}{dx}\log\Gamma(x)$\\
$\mathcal{X}$ & A set from which values are drawn (e.g.,$\mathcal{X}=\mathbb{R}^D$)\\
\noalign{\smallskip}\hline\noalign{\smallskip}
\end{longtable}
\section*{Linear algebra notation}
We use boldface lower-case to denote vectors, such as $\vec{x}$, and boldface upper-case to denote matrices, such as $\vec{X}$. We denote entries in a matrix by non-bold upper case letters, such as $X_{ij}$.
Vectors are assumed to be column vectors, unless noted otherwise. We use $(x_1,\cdots,x_D)$ to denote a column vector created by stacking $D$ scalars. If we write $\vec{X}=(\vec{x}_1,\cdots,\vec{x}_n)$, where the left hand side is a matrix, we mean to stack the $\vec{x}_i$ along the columns, creating a matrix.
\begin{longtable}{ll}
\hline\noalign{\smallskip}
\textbf{Symbol} & \textbf{Meaning} \\
\noalign{\smallskip}\hline\noalign{\smallskip}
$\vec{X} \succ 0$ & $\vec{X}$ is a positive definite matrix\\
$tr(\vec{X})$ & Trace of a matrix\\
$det(\vec{X})$ & Determinant of matrix $\vec{X}$\\
$\abs{\vec{X}}$ & Determinant of matrix $\vec{X}$\\
$\vec{X}^{-1}$ & Inverse of a matrix\\
$\vec{X}^{\dagger}$ & Pseudo-inverse of a matrix\\
$\vec{X}^T$ & Transpose of a matrix\\
$\vec{x}^T$ & Transpose of a vector\\
$\mathrm{diag}(x)$ & Diagonal matrix made from vector $\vec{x}$\\
$\mathrm{diag}(X)$ & Diagonal vector extracted from matrix $\vec{X}$\\
$\vec{I}$ or $\vec{I}_d$ & Identity matrix of size $d \times d$ (ones on diagonal, zeros of)\\
$\vec{1}$ or $\vec{1}_d$ & Vector of ones (of length $d$)\\
$\vec{0}$ or $\vec{0}_d$ & Vector of zeros (of length $d$)\\
$\abs{\abs{\vec{x}}}=\abs{\abs{\vec{x}}}_2$ & Euclidean or $\ell_2$ norm $\sqrt{\sum\limits_{j=1}^{d} x_j^2}$\\
$\abs{\abs{\vec{x}}}_1$ & $\ell_1$ norm $\sum\limits_{j=1}^{d} \abs{x_j}$\\
$\vec{X}_{:,j}$ & j'th column of matrix\\
$\vec{X}_{i,:}$ & transpose of $i$'th row of matrix (a column vector)\\
$\vec{X}_{i,j}$ & Element $(i,j)$ of matrix $\vec{X}$ \\
$\vec{x} \otimes \vec{y}$ & Tensor product of $\vec{x}$ and $\vec{y}$\\
\noalign{\smallskip}\hline\noalign{\smallskip}
\end{longtable}
\section*{Probability notation}
We denote random and fixed scalars by lower case, random and fixed vectors by bold lower case, and random and fixed matrices by bold upper case. Occasionally we use non-bold upper case to denote scalar random variables. Also, we use $p()$ for both discrete and continuous random variables
\begin{longtable}{ll}
\hline\noalign{\smallskip}
\textbf{Symbol} & \textbf{Meaning} \\
\noalign{\smallskip}\hline\noalign{\smallskip}
$X,Y$ & Random variable\\
$P()$ & Probability of a random event\\
$F()$ & Cumulative distribution function(CDF), also called distribution function\\
$p(x)$ & Probability mass function(PMF)\\
$f(x)$ & probability density function(PDF) \\
$F(x,y)$ & Joint CDF\\
$p(x,y)$ & Joint PMF \\
$f(x,y)$ & Joint PDF\\
$p(X|Y)$ & Conditional PMF, also called conditional probability\\
$f_{X|Y}(x|y)$ & Conditional PDF\\
$X \perp Y$ & X is independent of Y\\
$X \not\perp Y$ & X is not independent of Y\\
$X \perp Y | Z $ & X is conditionally independent of Y given Z\\
$X \not\perp Y | Z $ & X is not conditionally independent of Y given Z\\
$X \sim p$ & X is distributed according to distribution $p$\\
$\vec{\alpha}$ & Parameters of a Beta or Dirichlet distribution\\
$\mathrm{cov}[X]$ & Covariance of X\\
$\mathbb{E}[X]$ & Expected value of X\\
$\mathbb{E}_q[X]$ & Expected value of X wrt distribution $q$\\
$\mathbb{H}(X)$ or $\mathbb{H}(p)$ & Entropy of distribution $p(X)$\\
$\mathbb{I}(X;Y)$ & Mutual information between X and Y\\
$\mathbb{KL}(p||q)$ & KL divergence from distribution $p$ to $q$\\
$\ell(\vec{\theta})$ & Log-likelihood function\\
$L(\theta,a)$ & Loss function for taking action $a$ when true state of nature is $\theta$\\
$\lambda$ & Precision (inverse variance) $\lambda=1/\sigma^2$\\
$\Lambda$ & Precision matrix $\Lambda=\Sigma^{-1}$\\
mode$[\vec X]$ & Most probable value of $\vec X$\\
$\mu$ & Mean of a scalar distribution\\
$\vec{\mu}$ & Mean of a multivariate distribution\\
$\Phi$ & cdf of standard normal\\
$\phi$ & pdf of standard normal\\
$\vec{\pi}$ & multinomial parameter vector, Stationary distribution of Markov chain\\
$\rho$ & Correlation coefficient \\
sigm($x$) & Sigmoid (logistic) function,$\dfrac{1}{1+e^{-x}}$\\
$\sigma^2$ & Variance\\
$\Sigma$ & Covariance matrix\\
var[$x$] & Variance of $x$\\
$\nu$ & Degrees of freedom parameter\\
Z & Normalization constant of a probability distribution\\
\noalign{\smallskip}\hline\noalign{\smallskip}
\end{longtable}
\section*{Machine learning/statistics notation}
In general, we use upper case letters to denote constants, such as $C, K, M, N, T$, etc. We use lower case letters as dummy indexes of the appropriate range, such as $c=1:C$ to index classes, $i=1:M$ to index data cases, $j=1:N$ to index input features, $k=1:K$ to index states or clusters, $t=1:T$ to index time, etc.
We use $x$ to represent an observed data vector. In a supervised problem, we use $y$ or $\vec{y}$ to represent the desired output label. We use $\vec{z}$ to represent a hidden variable. Sometimes we also use $q$ to represent a hidden discrete variable.
\begin{longtable}{ll}
\hline\noalign{\smallskip}
\textbf{Symbol} & \textbf{Meaning} \\
\noalign{\smallskip}\hline\noalign{\smallskip}
$C$ & Number of classes\\
$D$ & Dimensionality of data vector (number of features)\\
$N$ & Number of data cases\\
$N_c$ & Number of examples of class $c$,$N_c=\sum_{i=1}^{N}\mathbb{I}(y_i=c)$\\
$R$ & Number of outputs (response variables)\\
$\mathcal{D}$ & Training data $\mathcal{D}=\left\{(\vec{x}_i,y_i) | i=1:N\right\}$\\
$\mathcal{D}_{test}$ & Test data\\
$\mathcal{X}$ & Input space\\
$\mathcal{Y}$ & Output space\\
$K$ & Number of states or dimensions of a variable (often latent)\\
$k(x,y)$ & Kernel function\\
$\vec{K}$ & Kernel matrix\\
$\mathcal{H}$ & Hypothesis space\\
$L$ & Loss function \\
$J(\vec{\theta})$ & Cost function\\
$f(\vec{x})$ & Decision function\\
$P(y|\vec{x})$ & Conditional probability\\
$\lambda$ & Strength of $\ell_2$ or $\ell_1 regularizer$\\
$\phi(x)$ & Basis function expansion of feature vector $\vec{x}$\\
$\Phi$ & Basis function expansion of design matrix $\vec{X}$\\
$q()$ & Approximate or proposal distribution\\
$Q(\vec{\theta},\vec{\theta}_{old})$ & Auxiliary function in EM\\
$T$ & Length of a sequence\\
$T(\mathcal{D})$ & Test statistic for data\\
$\vec{T}$ & Transition matrix of Markov chain\\
$\vec{\theta}$ & Parameter vector\\
$\vec{\theta}^{(s)}$ & $s$'th sample of parameter vector\\
$\hat{\vec{\theta}}$ & Estimate (usually MLE or MAP) of $\vec{\theta}$\\
$\hat{\vec{\theta}}_{MLE}$ & Maximum likelihood estimate of $\vec{\theta}$\\
$\hat{\vec{\theta}}_{MAP}$ & MAP estimate of $\vec{\theta}$\\
$\bar{\vec{\theta}}$ & Estimate (usually posterior mean) of $\vec{\theta}$\\
$\vec{w}$ & Vector of regression weights (called $\vec{\beta}$ in statistics)\\
b & intercept (called $\varepsilon$ in statistics)\\
$\vec{W}$ & Matrix of regression weights\\
$x_{ij}$ & Component (i.e., feature) $j$ of data case $i$ ,for $i=1:N ,j=1:D$\\
$\vec{x}_i$ & Training case, $i=1:N$\\
$\vec{X}$ & Design matrix of size $N \times D$\\
$\bar{\vec{x}}$ & Empirical mean $\bar{\vec{x}}=\dfrac{1}{N}\sum_{i=1}^{N} \vec{x}_i$\\
$\tilde{\vec{x}}$ & Future test case\\
$\vec{x}_*$ & Feature test case\\
$\vec{y}$ & Vector of all training labels $\vec{y} =(y_1,...,y_N)$\\
$z_{ij}$ & Latent component $j$ for case $i$\\
\noalign{\smallskip}\hline\noalign{\smallskip}
\end{longtable}
\twocolumn