-
Notifications
You must be signed in to change notification settings - Fork 7
/
imagenet.py
808 lines (653 loc) · 45.4 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
import argparse
import os
import random
import shutil
import time
import warnings
import math
import numpy as np
from PIL import ImageOps, Image
import tempfile
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torch.nn.functional as F
import pixmix_utils as utils
from collections import OrderedDict
from calibration_tools import *
utils.IMAGE_SIZE = 224
parser = argparse.ArgumentParser(description='ImageNet Training')
parser.add_argument('--data-standard', help='Path to dataset', default="data/imagenet/train/")
parser.add_argument('--data-val', help='Path to validation dataset', default="data/imagenet/val/")
parser.add_argument('--imagenet-r-dir', help='Path to ImageNet-R', default="data/imagenet_r/")
parser.add_argument('--imagenet-c-dir', help='Path to ImageNet-C', default="data/imagenet_c/")
parser.add_argument('--mixing-set', help='Path to mixing set', required=True)
parser.add_argument('--num-classes', choices=['200', '1000'], required=True)
parser.add_argument(
'--aug-severity',
default=1,
type=int,
help='Severity of base augmentation operators')
parser.add_argument(
'--beta',
default=4,
type=int,
help='Severity of mixing')
parser.add_argument(
'--k',
default=4,
type=int,
help='Mixing iterations')
parser.add_argument(
'--all-ops',
'-all',
action='store_true',
help='Turn on all augmentation operations (+brightness,contrast,color,sharpness).')
parser.add_argument('--save', default='checkpoints/TEMP', type=str)
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50')
parser.add_argument('-j', '--workers', default=36, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--batch-size-val', default=256, type=int)
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set and Imagenet-C')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
args = parser.parse_args()
print(args)
##################################################
# ImageNet-1K classes
##################################################
all_classes = ['n01440764', 'n01443537', 'n01484850', 'n01491361', 'n01494475', 'n01496331', 'n01498041', 'n01514668', 'n01514859', 'n01518878', 'n01530575', 'n01531178', 'n01532829', 'n01534433', 'n01537544', 'n01558993', 'n01560419', 'n01580077', 'n01582220', 'n01592084', 'n01601694', 'n01608432', 'n01614925', 'n01616318', 'n01622779', 'n01629819', 'n01630670', 'n01631663', 'n01632458', 'n01632777', 'n01641577', 'n01644373', 'n01644900', 'n01664065', 'n01665541', 'n01667114', 'n01667778', 'n01669191', 'n01675722', 'n01677366', 'n01682714', 'n01685808', 'n01687978', 'n01688243', 'n01689811', 'n01692333', 'n01693334', 'n01694178', 'n01695060', 'n01697457', 'n01698640', 'n01704323', 'n01728572', 'n01728920', 'n01729322', 'n01729977', 'n01734418', 'n01735189', 'n01737021', 'n01739381', 'n01740131', 'n01742172', 'n01744401', 'n01748264', 'n01749939', 'n01751748', 'n01753488', 'n01755581', 'n01756291', 'n01768244', 'n01770081', 'n01770393', 'n01773157', 'n01773549', 'n01773797', 'n01774384', 'n01774750', 'n01775062', 'n01776313', 'n01784675', 'n01795545', 'n01796340', 'n01797886', 'n01798484', 'n01806143', 'n01806567', 'n01807496', 'n01817953', 'n01818515', 'n01819313', 'n01820546', 'n01824575', 'n01828970', 'n01829413', 'n01833805', 'n01843065', 'n01843383', 'n01847000', 'n01855032', 'n01855672', 'n01860187', 'n01871265', 'n01872401', 'n01873310', 'n01877812', 'n01882714', 'n01883070', 'n01910747', 'n01914609', 'n01917289', 'n01924916', 'n01930112', 'n01943899', 'n01944390', 'n01945685', 'n01950731', 'n01955084', 'n01968897', 'n01978287', 'n01978455', 'n01980166', 'n01981276', 'n01983481', 'n01984695', 'n01985128', 'n01986214', 'n01990800', 'n02002556', 'n02002724', 'n02006656', 'n02007558', 'n02009229', 'n02009912', 'n02011460', 'n02012849', 'n02013706', 'n02017213', 'n02018207', 'n02018795', 'n02025239', 'n02027492', 'n02028035', 'n02033041', 'n02037110', 'n02051845', 'n02056570', 'n02058221', 'n02066245', 'n02071294', 'n02074367', 'n02077923', 'n02085620', 'n02085782', 'n02085936', 'n02086079', 'n02086240', 'n02086646', 'n02086910', 'n02087046', 'n02087394', 'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02088632', 'n02089078', 'n02089867', 'n02089973', 'n02090379', 'n02090622', 'n02090721', 'n02091032', 'n02091134', 'n02091244', 'n02091467', 'n02091635', 'n02091831', 'n02092002', 'n02092339', 'n02093256', 'n02093428', 'n02093647', 'n02093754', 'n02093859', 'n02093991', 'n02094114', 'n02094258', 'n02094433', 'n02095314', 'n02095570', 'n02095889', 'n02096051', 'n02096177', 'n02096294', 'n02096437', 'n02096585', 'n02097047', 'n02097130', 'n02097209', 'n02097298', 'n02097474', 'n02097658', 'n02098105', 'n02098286', 'n02098413', 'n02099267', 'n02099429', 'n02099601', 'n02099712', 'n02099849', 'n02100236', 'n02100583', 'n02100735', 'n02100877', 'n02101006', 'n02101388', 'n02101556', 'n02102040', 'n02102177', 'n02102318', 'n02102480', 'n02102973', 'n02104029', 'n02104365', 'n02105056', 'n02105162', 'n02105251', 'n02105412', 'n02105505', 'n02105641', 'n02105855', 'n02106030', 'n02106166', 'n02106382', 'n02106550', 'n02106662', 'n02107142', 'n02107312', 'n02107574', 'n02107683', 'n02107908', 'n02108000', 'n02108089', 'n02108422', 'n02108551', 'n02108915', 'n02109047', 'n02109525', 'n02109961', 'n02110063', 'n02110185', 'n02110341', 'n02110627', 'n02110806', 'n02110958', 'n02111129', 'n02111277', 'n02111500', 'n02111889', 'n02112018', 'n02112137', 'n02112350', 'n02112706', 'n02113023', 'n02113186', 'n02113624', 'n02113712', 'n02113799', 'n02113978', 'n02114367', 'n02114548', 'n02114712', 'n02114855', 'n02115641', 'n02115913', 'n02116738', 'n02117135', 'n02119022', 'n02119789', 'n02120079', 'n02120505', 'n02123045', 'n02123159', 'n02123394', 'n02123597', 'n02124075', 'n02125311', 'n02127052', 'n02128385', 'n02128757', 'n02128925', 'n02129165', 'n02129604', 'n02130308', 'n02132136', 'n02133161', 'n02134084', 'n02134418', 'n02137549', 'n02138441', 'n02165105', 'n02165456', 'n02167151', 'n02168699', 'n02169497', 'n02172182', 'n02174001', 'n02177972', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02229544', 'n02231487', 'n02233338', 'n02236044', 'n02256656', 'n02259212', 'n02264363', 'n02268443', 'n02268853', 'n02276258', 'n02277742', 'n02279972', 'n02280649', 'n02281406', 'n02281787', 'n02317335', 'n02319095', 'n02321529', 'n02325366', 'n02326432', 'n02328150', 'n02342885', 'n02346627', 'n02356798', 'n02361337', 'n02363005', 'n02364673', 'n02389026', 'n02391049', 'n02395406', 'n02396427', 'n02397096', 'n02398521', 'n02403003', 'n02408429', 'n02410509', 'n02412080', 'n02415577', 'n02417914', 'n02422106', 'n02422699', 'n02423022', 'n02437312', 'n02437616', 'n02441942', 'n02442845', 'n02443114', 'n02443484', 'n02444819', 'n02445715', 'n02447366', 'n02454379', 'n02457408', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02483708', 'n02484975', 'n02486261', 'n02486410', 'n02487347', 'n02488291', 'n02488702', 'n02489166', 'n02490219', 'n02492035', 'n02492660', 'n02493509', 'n02493793', 'n02494079', 'n02497673', 'n02500267', 'n02504013', 'n02504458', 'n02509815', 'n02510455', 'n02514041', 'n02526121', 'n02536864', 'n02606052', 'n02607072', 'n02640242', 'n02641379', 'n02643566', 'n02655020', 'n02666196', 'n02667093', 'n02669723', 'n02672831', 'n02676566', 'n02687172', 'n02690373', 'n02692877', 'n02699494', 'n02701002', 'n02704792', 'n02708093', 'n02727426', 'n02730930', 'n02747177', 'n02749479', 'n02769748', 'n02776631', 'n02777292', 'n02782093', 'n02783161', 'n02786058', 'n02787622', 'n02788148', 'n02790996', 'n02791124', 'n02791270', 'n02793495', 'n02794156', 'n02795169', 'n02797295', 'n02799071', 'n02802426', 'n02804414', 'n02804610', 'n02807133', 'n02808304', 'n02808440', 'n02814533', 'n02814860', 'n02815834', 'n02817516', 'n02823428', 'n02823750', 'n02825657', 'n02834397', 'n02835271', 'n02837789', 'n02840245', 'n02841315', 'n02843684', 'n02859443', 'n02860847', 'n02865351', 'n02869837', 'n02870880', 'n02871525', 'n02877765', 'n02879718', 'n02883205', 'n02892201', 'n02892767', 'n02894605', 'n02895154', 'n02906734', 'n02909870', 'n02910353', 'n02916936', 'n02917067', 'n02927161', 'n02930766', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02951585', 'n02963159', 'n02965783', 'n02966193', 'n02966687', 'n02971356', 'n02974003', 'n02977058', 'n02978881', 'n02979186', 'n02980441', 'n02981792', 'n02988304', 'n02992211', 'n02992529', 'n02999410', 'n03000134', 'n03000247', 'n03000684', 'n03014705', 'n03016953', 'n03017168', 'n03018349', 'n03026506', 'n03028079', 'n03032252', 'n03041632', 'n03042490', 'n03045698', 'n03047690', 'n03062245', 'n03063599', 'n03063689', 'n03065424', 'n03075370', 'n03085013', 'n03089624', 'n03095699', 'n03100240', 'n03109150', 'n03110669', 'n03124043', 'n03124170', 'n03125729', 'n03126707', 'n03127747', 'n03127925', 'n03131574', 'n03133878', 'n03134739', 'n03141823', 'n03146219', 'n03160309', 'n03179701', 'n03180011', 'n03187595', 'n03188531', 'n03196217', 'n03197337', 'n03201208', 'n03207743', 'n03207941', 'n03208938', 'n03216828', 'n03218198', 'n03220513', 'n03223299', 'n03240683', 'n03249569', 'n03250847', 'n03255030', 'n03259280', 'n03271574', 'n03272010', 'n03272562', 'n03290653', 'n03291819', 'n03297495', 'n03314780', 'n03325584', 'n03337140', 'n03344393', 'n03345487', 'n03347037', 'n03355925', 'n03372029', 'n03376595', 'n03379051', 'n03384352', 'n03388043', 'n03388183', 'n03388549', 'n03393912', 'n03394916', 'n03400231', 'n03404251', 'n03417042', 'n03424325', 'n03425413', 'n03443371', 'n03444034', 'n03445777', 'n03445924', 'n03447447', 'n03447721', 'n03450230', 'n03452741', 'n03457902', 'n03459775', 'n03461385', 'n03467068', 'n03476684', 'n03476991', 'n03478589', 'n03481172', 'n03482405', 'n03483316', 'n03485407', 'n03485794', 'n03492542', 'n03494278', 'n03495258', 'n03496892', 'n03498962', 'n03527444', 'n03529860', 'n03530642', 'n03532672', 'n03534580', 'n03535780', 'n03538406', 'n03544143', 'n03584254', 'n03584829', 'n03590841', 'n03594734', 'n03594945', 'n03595614', 'n03598930', 'n03599486', 'n03602883', 'n03617480', 'n03623198', 'n03627232', 'n03630383', 'n03633091', 'n03637318', 'n03642806', 'n03649909', 'n03657121', 'n03658185', 'n03661043', 'n03662601', 'n03666591', 'n03670208', 'n03673027', 'n03676483', 'n03680355', 'n03690938', 'n03691459', 'n03692522', 'n03697007', 'n03706229', 'n03709823', 'n03710193', 'n03710637', 'n03710721', 'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03729826', 'n03733131', 'n03733281', 'n03733805', 'n03742115', 'n03743016', 'n03759954', 'n03761084', 'n03763968', 'n03764736', 'n03769881', 'n03770439', 'n03770679', 'n03773504', 'n03775071', 'n03775546', 'n03776460', 'n03777568', 'n03777754', 'n03781244', 'n03782006', 'n03785016', 'n03786901', 'n03787032', 'n03788195', 'n03788365', 'n03791053', 'n03792782', 'n03792972', 'n03793489', 'n03794056', 'n03796401', 'n03803284', 'n03804744', 'n03814639', 'n03814906', 'n03825788', 'n03832673', 'n03837869', 'n03838899', 'n03840681', 'n03841143', 'n03843555', 'n03854065', 'n03857828', 'n03866082', 'n03868242', 'n03868863', 'n03871628', 'n03873416', 'n03874293', 'n03874599', 'n03876231', 'n03877472', 'n03877845', 'n03884397', 'n03887697', 'n03888257', 'n03888605', 'n03891251', 'n03891332', 'n03895866', 'n03899768', 'n03902125', 'n03903868', 'n03908618', 'n03908714', 'n03916031', 'n03920288', 'n03924679', 'n03929660', 'n03929855', 'n03930313', 'n03930630', 'n03933933', 'n03935335', 'n03937543', 'n03938244', 'n03942813', 'n03944341', 'n03947888', 'n03950228', 'n03954731', 'n03956157', 'n03958227', 'n03961711', 'n03967562', 'n03970156', 'n03976467', 'n03976657', 'n03977966', 'n03980874', 'n03982430', 'n03983396', 'n03991062', 'n03992509', 'n03995372', 'n03998194', 'n04004767', 'n04005630', 'n04008634', 'n04009552', 'n04019541', 'n04023962', 'n04026417', 'n04033901', 'n04033995', 'n04037443', 'n04039381', 'n04040759', 'n04041544', 'n04044716', 'n04049303', 'n04065272', 'n04067472', 'n04069434', 'n04070727', 'n04074963', 'n04081281', 'n04086273', 'n04090263', 'n04099969', 'n04111531', 'n04116512', 'n04118538', 'n04118776', 'n04120489', 'n04125021', 'n04127249', 'n04131690', 'n04133789', 'n04136333', 'n04141076', 'n04141327', 'n04141975', 'n04146614', 'n04147183', 'n04149813', 'n04152593', 'n04153751', 'n04154565', 'n04162706', 'n04179913', 'n04192698', 'n04200800', 'n04201297', 'n04204238', 'n04204347', 'n04208210', 'n04209133', 'n04209239', 'n04228054', 'n04229816', 'n04235860', 'n04238763', 'n04239074', 'n04243546', 'n04251144', 'n04252077', 'n04252225', 'n04254120', 'n04254680', 'n04254777', 'n04258138', 'n04259630', 'n04263257', 'n04264628', 'n04265275', 'n04266014', 'n04270147', 'n04273569', 'n04275548', 'n04277352', 'n04285008', 'n04286575', 'n04296562', 'n04310018', 'n04311004', 'n04311174', 'n04317175', 'n04325704', 'n04326547', 'n04328186', 'n04330267', 'n04332243', 'n04335435', 'n04336792', 'n04344873', 'n04346328', 'n04347754', 'n04350905', 'n04355338', 'n04355933', 'n04356056', 'n04357314', 'n04366367', 'n04367480', 'n04370456', 'n04371430', 'n04371774', 'n04372370', 'n04376876', 'n04380533', 'n04389033', 'n04392985', 'n04398044', 'n04399382', 'n04404412', 'n04409515', 'n04417672', 'n04418357', 'n04423845', 'n04428191', 'n04429376', 'n04435653', 'n04442312', 'n04443257', 'n04447861', 'n04456115', 'n04458633', 'n04461696', 'n04462240', 'n04465501', 'n04467665', 'n04476259', 'n04479046', 'n04482393', 'n04483307', 'n04485082', 'n04486054', 'n04487081', 'n04487394', 'n04493381', 'n04501370', 'n04505470', 'n04507155', 'n04509417', 'n04515003', 'n04517823', 'n04522168', 'n04523525', 'n04525038', 'n04525305', 'n04532106', 'n04532670', 'n04536866', 'n04540053', 'n04542943', 'n04548280', 'n04548362', 'n04550184', 'n04552348', 'n04553703', 'n04554684', 'n04557648', 'n04560804', 'n04562935', 'n04579145', 'n04579432', 'n04584207', 'n04589890', 'n04590129', 'n04591157', 'n04591713', 'n04592741', 'n04596742', 'n04597913', 'n04599235', 'n04604644', 'n04606251', 'n04612504', 'n04613696', 'n06359193', 'n06596364', 'n06785654', 'n06794110', 'n06874185', 'n07248320', 'n07565083', 'n07579787', 'n07583066', 'n07584110', 'n07590611', 'n07613480', 'n07614500', 'n07615774', 'n07684084', 'n07693725', 'n07695742', 'n07697313', 'n07697537', 'n07711569', 'n07714571', 'n07714990', 'n07715103', 'n07716358', 'n07716906', 'n07717410', 'n07717556', 'n07718472', 'n07718747', 'n07720875', 'n07730033', 'n07734744', 'n07742313', 'n07745940', 'n07747607', 'n07749582', 'n07753113', 'n07753275', 'n07753592', 'n07754684', 'n07760859', 'n07768694', 'n07802026', 'n07831146', 'n07836838', 'n07860988', 'n07871810', 'n07873807', 'n07875152', 'n07880968', 'n07892512', 'n07920052', 'n07930864', 'n07932039', 'n09193705', 'n09229709', 'n09246464', 'n09256479', 'n09288635', 'n09332890', 'n09399592', 'n09421951', 'n09428293', 'n09468604', 'n09472597', 'n09835506', 'n10148035', 'n10565667', 'n11879895', 'n11939491', 'n12057211', 'n12144580', 'n12267677', 'n12620546', 'n12768682', 'n12985857', 'n12998815', 'n13037406', 'n13040303', 'n13044778', 'n13052670', 'n13054560', 'n13133613', 'n15075141']
classes_chosen_1000 = all_classes
assert len(classes_chosen_1000) == 1000
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
##################################################
# ImageNet-R classes
##################################################
imagenet_r_wnids = ['n01443537', 'n01484850', 'n01494475', 'n01498041', 'n01514859', 'n01518878', 'n01531178', 'n01534433', 'n01614925', 'n01616318', 'n01630670', 'n01632777', 'n01644373', 'n01677366', 'n01694178', 'n01748264', 'n01770393', 'n01774750', 'n01784675', 'n01806143', 'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01860187', 'n01882714', 'n01910747', 'n01944390', 'n01983481', 'n01986214', 'n02007558', 'n02009912', 'n02051845', 'n02056570', 'n02066245', 'n02071294', 'n02077923', 'n02085620', 'n02086240', 'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02091032', 'n02091134', 'n02092339', 'n02094433', 'n02096585', 'n02097298', 'n02098286', 'n02099601', 'n02099712', 'n02102318', 'n02106030', 'n02106166', 'n02106550', 'n02106662', 'n02108089', 'n02108915', 'n02109525', 'n02110185', 'n02110341', 'n02110958', 'n02112018', 'n02112137', 'n02113023', 'n02113624', 'n02113799', 'n02114367', 'n02117135', 'n02119022', 'n02123045', 'n02128385', 'n02128757', 'n02129165', 'n02129604', 'n02130308', 'n02134084', 'n02138441', 'n02165456', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02233338', 'n02236044', 'n02268443', 'n02279972', 'n02317335', 'n02325366', 'n02346627', 'n02356798', 'n02363005', 'n02364673', 'n02391049', 'n02395406', 'n02398521', 'n02410509', 'n02423022', 'n02437616', 'n02445715', 'n02447366', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02486410', 'n02510455', 'n02526121', 'n02607072', 'n02655020', 'n02672831', 'n02701002', 'n02749479', 'n02769748', 'n02793495', 'n02797295', 'n02802426', 'n02808440', 'n02814860', 'n02823750', 'n02841315', 'n02843684', 'n02883205', 'n02906734', 'n02909870', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02966193', 'n02980441', 'n02992529', 'n03124170', 'n03272010', 'n03345487', 'n03372029', 'n03424325', 'n03452741', 'n03467068', 'n03481172', 'n03494278', 'n03495258', 'n03498962', 'n03594945', 'n03602883', 'n03630383', 'n03649909', 'n03676483', 'n03710193', 'n03773504', 'n03775071', 'n03888257', 'n03930630', 'n03947888', 'n04086273', 'n04118538', 'n04133789', 'n04141076', 'n04146614', 'n04147183', 'n04192698', 'n04254680', 'n04266014', 'n04275548', 'n04310018', 'n04325704', 'n04347754', 'n04389033', 'n04409515', 'n04465501', 'n04487394', 'n04522168', 'n04536866', 'n04552348', 'n04591713', 'n07614500', 'n07693725', 'n07695742', 'n07697313', 'n07697537', 'n07714571', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07742313', 'n07745940', 'n07749582', 'n07753275', 'n07753592', 'n07768694', 'n07873807', 'n07880968', 'n07920052', 'n09472597', 'n09835506', 'n10565667', 'n12267677']
imagenet_r_wnids.sort()
classes_chosen_200 = imagenet_r_wnids[:] # Choose 100 classes for our dataset
assert len(classes_chosen_200) == 200
imagenet_r_mask = [wnid in classes_chosen_200 for wnid in all_classes]
##################################################
# ImageNet-A classes
##################################################
imagenet_a_wnids = ['n03355925', 'n03255030', 'n02504458', 'n01847000', 'n01910747', 'n02037110', 'n12144580', 'n03388043', 'n01531178', 'n02883205', 'n04131690', 'n07697313', 'n02951358', 'n02190166', 'n04456115', 'n03840681', 'n04347754', 'n04310018', 'n02980441', 'n04208210', 'n02259212', 'n01580077', 'n04086273', 'n01774750', 'n03014705', 'n02701002', 'n03888257', 'n02174001', 'n02895154', 'n04606251', 'n03721384', 'n02280649', 'n02051845', 'n03891332', 'n03384352', 'n02177972', 'n07753592', 'n02281787', 'n04235860', 'n03584829', 'n02233338', 'n04146614', 'n12057211', 'n02007558', 'n02356798', 'n03250847', 'n04033901', 'n01698640', 'n02129165', 'n07831146', 'n07714990', 'n02690373', 'n03026506', 'n02085620', 'n04141076', 'n04509417', 'n03444034', 'n02325366', 'n01694178', 'n03854065', 'n04344873', 'n03617480', 'n04389033', 'n02793495', 'n02279972', 'n03788195', 'n01843383', 'n02730930', 'n04366367', 'n04118538', 'n02317335', 'n02165456', 'n02133161', 'n04591713', 'n04019541', 'n07749582', 'n04067472', 'n01944390', 'n02879718', 'n02486410', 'n03452741', 'n01498041', 'n01784675', 'n04317175', 'n02906734', 'n02106550', 'n01677366', 'n01986214', 'n02948072', 'n02672831', 'n01820546', 'n03804744', 'n03717622', 'n02454379', 'n07718472', 'n04507155', 'n01882714', 'n03724870', 'n01833805', 'n04275548', 'n04252225', 'n02802426', 'n04133789', 'n03935335', 'n03590841', 'n01914609', 'n03124043', 'n04099969', 'n04179913', 'n02119022', 'n07697537', 'n01735189', 'n04254120', 'n02676566', 'n02127052', 'n01687978', 'n03666591', 'n01770393', 'n02814860', 'n02077923', 'n04270147', 'n02236044', 'n01819313', 'n04355338', 'n02206856', 'n01534433', 'n04376876', 'n04147183', 'n04532670', 'n02777292', 'n02445715', 'n01631663', 'n04039381', 'n04540053', 'n03837869', 'n03187595', 'n04482393', 'n02106662', 'n01924916', 'n02782093', 'n03125729', 'n02669723', 'n02655020', 'n07760859', 'n02231487', 'n02837789', 'n02009912', 'n12267677', 'n09229709', 'n02346627', 'n01558993', 'n03982430', 'n02992211', 'n02797295', 'n02361337', 'n04252077', 'n03291819', 'n01641577', 'n01669191', 'n01614925', 'n02410509', 'n02123394', 'n07583066', 'n03720891', 'n02110958', 'n01855672', 'n07734744', 'n03594945', 'n02787622', 'n02999410', 'n09472597', 'n03775071', 'n02268443', 'n04399382', 'n07768694', 'n02492035', 'n11879895', 'n03445924', 'n07695742', 'n03443371', 'n09835506', 'n03325584', 'n03670208', 'n04442312', 'n01770081', 'n02815834', 'n02226429', 'n02219486', 'n03417042', 'n03196217', 'n04554684', 'n04562935', 'n01985128', 'n02099601', 'n09246464', 'n07720875', 'n03223299', 'n01616318', 'n03483316', 'n02137549']
imagenet_a_wnids.sort()
assert len(imagenet_a_wnids) == 200
imagenet_a_mask = [wnid in imagenet_a_wnids for wnid in all_classes]
if args.num_classes == '200':
classes_chosen = classes_chosen_200
elif args.num_classes == '1000':
classes_chosen = classes_chosen_1000
else:
raise NotImplementedError
if os.path.exists(args.save):
resp = "None"
while resp.lower() not in {'y', 'n'}:
resp = input("Save directory {0} exits. Continue? [Y/n]: ".format(args.save))
if resp.lower() == 'y':
break
elif resp.lower() == 'n':
exit(1)
else:
pass
else:
if not os.path.exists(args.save):
os.makedirs(args.save)
if not os.path.isdir(args.save):
raise Exception('%s is not a dir' % args.save)
else:
print("Made save directory", args.save)
class ImageNetSubsetDataset(datasets.ImageFolder):
"""
Dataset class to take a specified subset of some larger dataset
"""
def __init__(self, root, *args, **kwargs):
# print(f"Using {len(classes_chosen)} classes")
self.new_root = tempfile.mkdtemp()
for _class in classes_chosen:
orig_dir = os.path.join(root, _class)
assert os.path.isdir(orig_dir)
os.symlink(orig_dir, os.path.join(self.new_root, _class))
super().__init__(self.new_root, *args, **kwargs)
def __del__(self):
# Clean up
shutil.rmtree(self.new_root)
def pixmix(orig, mixing_pic, preprocess):
mixings = utils.mixings
tensorize, normalize = preprocess['tensorize'], preprocess['normalize']
if np.random.random() < 0.5:
mixed = tensorize(augment_input(orig))
else:
mixed = tensorize(orig)
for _ in range(np.random.randint(args.k + 1)):
if np.random.random() < 0.5:
aug_image_copy = tensorize(augment_input(orig))
else:
aug_image_copy = tensorize(mixing_pic)
mixed_op = np.random.choice(mixings)
mixed = mixed_op(mixed, aug_image_copy, args.beta)
mixed = torch.clip(mixed, 0, 1)
return normalize(mixed)
def augment_input(image):
aug_list = utils.augmentations_all if args.all_ops else utils.augmentations
op = np.random.choice(aug_list)
return op(image.copy(), args.aug_severity)
class PixMixDataset(torch.utils.data.Dataset):
"""Dataset wrapper to perform PixMix."""
def __init__(self, dataset, mixing_set, preprocess):
self.dataset = dataset
self.mixing_set = mixing_set
self.preprocess = preprocess
def __getitem__(self, i):
x, y = self.dataset[i]
rnd_idx = np.random.choice(len(self.mixing_set))
mixing_pic, _ = self.mixing_set[rnd_idx]
return pixmix(x, mixing_pic, self.preprocess), y
def __len__(self):
return len(self.dataset)
best_acc1 = 0
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
main_worker(args.gpu, args)
def main_worker(gpu, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
print("=> creating model '{}'".format(args.arch))
if args.arch == 'vgg16':
model = models.vgg16(
pretrained=args.pretrained,
use_deepaugment_realtime=True
)
model.classifier[-1] = torch.nn.Linear(4096, len(classes_chosen))
print(model)
elif args.arch == 'vgg11':
model = models.vgg11(
pretrained=args.pretrained,
use_deepaugment_realtime=True
)
model.classifier[-1] = torch.nn.Linear(4096, len(classes_chosen))
print(model)
elif args.arch == 'resnet18':
model = models.resnet18(
pretrained=args.pretrained
)
if len(classes_chosen) != 1000:
model.fc = torch.nn.Linear(512, len(classes_chosen))
print(model)
elif args.arch == 'resnet50':
model = models.resnet50(
pretrained=args.pretrained
)
if len(classes_chosen) != 1000:
model.fc = torch.nn.Linear(2048, len(classes_chosen))
print(model)
elif args.arch == 'deit':
model = torch.hub.load('facebookresearch/deit:main', 'deit_small_patch16_224', pretrained=True)
if len(classes_chosen) != 1000:
model.head = torch.nn.Linear(192, len(classes_chosen), bias=True)
print(model)
else:
raise NotImplementedError()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=True)
if args.arch == 'deit':
optimizer = torch.optim.AdamW(model.parameters(), args.lr, weight_decay=args.weight_decay)
# optionally resume from a checkpoint
args.start_epoch = 0
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
print('Start epoch:', args.start_epoch)
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
to_tensor = transforms.ToTensor()
normalize = transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
if args.data_standard == None:
return
val_loader = torch.utils.data.DataLoader(
ImageNetSubsetDataset(
args.data_val,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
),
batch_size=args.batch_size_val, shuffle=False,
num_workers=32, pin_memory=True)
val_loader_imagenet_r = torch.utils.data.DataLoader(
datasets.ImageFolder(args.imagenet_r_dir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=32, pin_memory=True)
# val_loader_imagenet_a = torch.utils.data.DataLoader(
# datasets.ImageFolder("/var/tmp/datasets/imagenet_a", transforms.Compose([
# transforms.Resize(256),
# transforms.CenterCrop(224),
# transforms.ToTensor(),
# normalize,
# ])),
# batch_size=args.batch_size, shuffle=False,
# num_workers=32, pin_memory=True)
if args.evaluate:
_, val_top1, val_top5 = validate(val_loader, model, criterion, args)
_, r_top1, r_top5 = validate(val_loader_imagenet_r, model, criterion, args, r=True)
# _, a_top1, a_top5 = validate(val_loader_imagenet_a, model, criterion, args, a=True)
with open(os.path.join(args.save, f"eval_results.csv"), 'a') as f:
f.write('val_top1,val_top5,r_top1,r_top5\n')
f.write('%0.5f,%0.5f,%0.5f,%0.5f\n' % (
val_top1, val_top5, r_top1, r_top5
))
evaluate_c(model, normalize, args)
# evaluate_c_bar(model, normalize, args)
print('FINISHED EVALUATION')
return
######################
# Training
######################
print(f"Using Dataset {args.data_standard}")
train_data = ImageNetSubsetDataset(
args.data_standard,
transform=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip()
])
)
mixing_set = datasets.ImageFolder(
args.mixing_set,
transform=transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224)
])
)
print('train_size', len(train_data))
print('mixing_set_size', len(mixing_set))
train_dataset = PixMixDataset(train_data, mixing_set, {'normalize': normalize, 'tensorize': to_tensor})
# Fix dataloader worker issue
# https://github.com/pytorch/pytorch/issues/5059
def wif(id):
uint64_seed = torch.initial_seed()
ss = np.random.SeedSequence([uint64_seed])
# More than 128 bits (4 32-bit words) would be overkill.
np.random.seed(ss.generate_state(4))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, sampler=None, worker_init_fn=wif)
def cosine_annealing(step, total_steps, lr_max, lr_min):
return lr_min + (lr_max - lr_min) * 0.5 * (
1 + np.cos(step / total_steps * np.pi))
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: cosine_annealing(
step,
args.epochs * len(train_loader),
1, # since lr_lambda computes multiplicative factor
1e-6 / (args.lr * args.batch_size / 256.)))
if args.start_epoch != 0:
scheduler.step(args.start_epoch * len(train_loader))
###########################################################################
##### Main Training Loop
###########################################################################
if not args.resume:
with open(os.path.join(args.save, 'training_log.csv'), 'w') as f:
f.write('epoch,train_loss,train_acc1,train_acc5,val_loss,val_acc1,val_acc5,R_loss,R_acc1,R_acc5\n')
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
train_losses_avg, train_top1_avg, train_top5_avg = train(train_loader, model, criterion, optimizer, scheduler, epoch, args)
print("Evaluating on validation set")
val_losses_avg, val_top1_avg, val_top5_avg = validate(val_loader, model, criterion, args)
val_R_losses_avg, val_R_top1_avg, val_R_top5_avg = validate(val_loader_imagenet_r, model, criterion, args, r=True)
# Save results in log file
with open(os.path.join(args.save, 'training_log.csv'), 'a') as f:
f.write('%03d,%0.5f,%0.5f,%0.5f,%0.5f,%0.5f,%0.5f,%0.5f,%0.5f,%0.5f\n' % (
(epoch + 1),
train_losses_avg, train_top1_avg, train_top5_avg,
val_losses_avg, val_top1_avg, val_top5_avg,
val_R_losses_avg, val_R_top1_avg, val_R_top5_avg
))
# remember best acc@1 and save checkpoint
is_best = val_top1_avg > best_acc1
best_acc1 = max(val_top1_avg, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best)
#########################
# evaluate on C
#########################
evaluate_c(model, normalize, args)
# evaluate_c_bar(model, normalize, args)
def evaluate_c(model, normalize, args):
model.eval()
args.data_path = args.imagenet_c_dir
with open(os.path.join(args.save, f"eval_imagenet_c_results.csv"), 'w') as f:
f.write('corruption,strength,top1_accuracy,calib\n')
corruptions = [e for e in os.listdir(args.data_path) if os.path.isdir(os.path.join(args.data_path, e))] # All subdirectories, ignoring normal files
corruptions = list(reversed(sorted(corruptions)))
# corruptions = np.array_split(corruptions, args.total_workers)[args.worker_number]
accuracy = []
calibs = []
for corr in corruptions:
for strength in {1,2,3,4,5}: # choose strengths
data_path = os.path.join(args.data_path, corr, str(strength))
dataset = ImageNetSubsetDataset(
data_path,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True
)
# Eval on this dataset
acc, test_confidence, test_correct = get_net_results(dataloader, model)
print(f"Eval on {corr} with strength {strength}: {acc}")
curr_calib = calib_err(test_confidence, test_correct, p='2')
with open(os.path.join(args.save, f"eval_imagenet_c_results.csv"), 'a') as f:
f.write('%s,%d,%0.5f,%0.5f\n' % (
corr,
strength,
acc,
curr_calib
))
accuracy.append(acc)
calibs.append(curr_calib)
del dataset
del dataloader
print("Accuracy on Imagenet-C: {:.3f}".format(100 * np.mean(accuracy)))
print('RMS {:.3f}\n'.format(100 * np.mean(calibs)))
def evaluate_c_bar(model, normalize, args):
model.eval()
args.data_path = "/var/tmp/datasets/imagenet_c_bar"
with open(os.path.join(args.save, f"eval_imagenet_c_bar_results.csv"), 'w') as f:
f.write('corruption,strength,top1_accuracy,calib\n')
corruptions = [e for e in os.listdir(args.data_path) if os.path.isdir(os.path.join(args.data_path, e))] # All subdirectories, ignoring normal files
corruptions = list(reversed(sorted(corruptions)))
# corruptions = np.array_split(corruptions, args.total_workers)[args.worker_number]
accuracy = []
calibs = []
for corr in corruptions:
for strength in {1,2,3,4,5}: # choose strengths
data_path = os.path.join(args.data_path, corr, str(strength))
dataset = ImageNetSubsetDataset(
data_path,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True
)
# Eval on this dataset
acc, test_confidence, test_correct = get_net_results(dataloader, model)
print(f"Eval on {corr} with strength {strength}: {acc}")
curr_calib = calib_err(test_confidence, test_correct, p='2')
with open(os.path.join(args.save, f"eval_imagenet_c_bar_results.csv"), 'a') as f:
f.write('%s,%d,%0.5f,%0.5f\n' % (
corr,
strength,
acc,
curr_calib
))
accuracy.append(acc)
calibs.append(curr_calib)
del dataset
del dataloader
print("Accuracy on Imagenet-C-Bar: {:.3f}".format(100 * np.mean(accuracy)))
print('RMS {:.3f}\n'.format(100 * np.mean(calibs)))
def train(train_loader, model, criterion, optimizer, scheduler, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
bx = images.cuda(args.gpu, non_blocking=True)
by = target.cuda(args.gpu, non_blocking=True)
logits = model(bx)
loss = criterion(logits, by)
output, target = logits, by
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
return losses.avg, top1.avg, top5.avg
def validate(val_loader, model, criterion, args, r=False, a=False, adv=None):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
if adv:
print('EVALUATING AGAINST ADVERSARY')
elif r:
print('EVALUATING ON IMAGENET-R')
elif a:
if args.num_classes == '200': # the 200 classes are different
return 0,0,0
print('EVALUATING ON IMAGENET-A')
to_np = lambda x: x.data.to('cpu').numpy()
confidence = []
correct = []
num_correct = 0
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# adversarial
if adv:
images = adv(model, images, target)
# compute output
output = model(images)
if r and args.num_classes == '1000': # eval on ImangeNet-R
output = output[:,imagenet_r_mask]
elif a:
output = output[:,imagenet_a_mask]
loss = criterion(output, target)
# accuracy
pred = output.data.max(1)[1]
num_correct += pred.eq(target.data).sum().item()
confidence.extend(to_np(F.softmax(output, dim=1).max(1)[0]).squeeze().tolist())
pred = output.data.max(1)[1]
correct.extend(pred.eq(target).to('cpu').numpy().squeeze().tolist())
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
print('RMS {:.3f}\n'.format(100 * calib_err(np.array(confidence.copy()), np.array(correct.copy()), p='2')))
return losses.avg, top1.avg, top5.avg
def save_checkpoint(state, is_best, filename=os.path.join(args.save, "model.pth.tar")):
torch.save(state, filename)
# if is_best:
# shutil.copyfile(filename, './model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_net_results(dataloader, net):
concat = lambda x: np.concatenate(x, axis=0)
to_np = lambda x: x.data.to('cpu').numpy()
confidence = []
correct = []
num_correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(dataloader):
data, target = data.cuda(), target.cuda()
output = net(data)
# accuracy
pred = output.data.max(1)[1]
num_correct += pred.eq(target.data).sum().item()
confidence.extend(to_np(F.softmax(output, dim=1).max(1)[0]).squeeze().tolist())
pred = output.data.max(1)[1]
correct.extend(pred.eq(target).to('cpu').numpy().squeeze().tolist())
return num_correct / len(dataloader.dataset), np.array(confidence.copy()), np.array(correct.copy())
if __name__ == '__main__':
main()