-
Notifications
You must be signed in to change notification settings - Fork 27
/
ACNet_train_V1_nyuv2.py
182 lines (159 loc) · 8.63 KB
/
ACNet_train_V1_nyuv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
'''
Our code is partially adapted from RedNet (https://github.com/JinDongJiang/RedNet)
'''
import argparse
import os
import time
import torch
from torch.utils.data import DataLoader
import torch.optim
import torchvision.transforms as transforms
from torchvision.utils import make_grid
from torch import nn
from tensorboardX import SummaryWriter
import ACNet_models_V1
# import ACNet_models_V1_first as ACNet_models_V1
# import ACNet_models_V1_delA as ACNet_models_V1
import ACNet_data_nyuv2 as ACNet_data
from utils import utils
from utils.utils import save_ckpt
from utils.utils import load_ckpt
from utils.utils import print_log
from torch.optim.lr_scheduler import LambdaLR
# nyuv2_frq = [0.04636878, 0.10907704, 0.152566 , 0.28470833, 0.29572534,
# 0.42489686, 0.49606689, 0.49985867, 0.45401091, 0.52183679,
# 0.50204292, 0.74834397, 0.6397011 , 1.00739467, 0.80728748,
# 1.01140891, 1.09866549, 1.25703345, 0.9408835 , 1.56565388,
# 1.19434108, 0.69079067, 1.86669642, 1.908 , 1.80942453,
# 2.72492965, 3.00060817, 2.47616595, 2.44053651, 3.80659652,
# 3.31090131, 3.9340523 , 3.53262803, 4.14408881, 3.71099056,
# 4.61082739, 4.78020462, 0.44061509, 0.53504894, 0.21667766]
nyuv2_frq = []
weight_path = './data/nyuv2_40class_weight.txt'
with open(weight_path,'r') as f:
context = f.readlines()
for x in context[1:]:
x = x.strip().strip('\ufeff')
nyuv2_frq.append(float(x))
print(len(nyuv2_frq))
parser = argparse.ArgumentParser(description='RGBD Sementic Segmentation')
parser.add_argument('--data-dir', default=None, metavar='DIR',
help='path to dataset-D')
parser.add_argument('--cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=1500, type=int, metavar='N',
help='number of total epochs to run (default: 1500)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=5, type=int,
metavar='N', help='mini-batch size (default: 10)')
parser.add_argument('--lr', '--learning-rate', default=2e-3, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print batch frequency (default: 50)')
parser.add_argument('--save-epoch-freq', '-s', default=5, type=int,
metavar='N', help='save epoch frequency (default: 5)')
parser.add_argument('--last-ckpt', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--lr-decay-rate', default=0.8, type=float,
help='decay rate of learning rate (default: 0.8)')
parser.add_argument('--lr-epoch-per-decay', default=100, type=int,
help='epoch of per decay of learning rate (default: 150)')
parser.add_argument('--ckpt-dir', default='./model/', metavar='DIR',
help='path to save checkpoints')
parser.add_argument('--summary-dir', default='./summary', metavar='DIR',
help='path to save summary')
parser.add_argument('--checkpoint', action='store_true', default=False,
help='Using Pytorch checkpoint or not')
args = parser.parse_args()
device = torch.device("cuda:0" if args.cuda and torch.cuda.is_available() else "cpu")
image_w = 640
image_h = 480
def train():
train_data = ACNet_data.SUNRGBD(transform=transforms.Compose([ACNet_data.scaleNorm(),
ACNet_data.RandomScale((1.0, 1.4)),
ACNet_data.RandomHSV((0.9, 1.1),
(0.9, 1.1),
(25, 25)),
ACNet_data.RandomCrop(image_h, image_w),
ACNet_data.RandomFlip(),
ACNet_data.ToTensor(),
ACNet_data.Normalize()]),
phase_train=True,
data_dir=args.data_dir)
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=False)
num_train = len(train_data)
if args.last_ckpt:
model = ACNet_models_V1.ACNet(num_class=40, pretrained=False)
else:
model = ACNet_models_V1.ACNet(num_class=40, pretrained=True)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
CEL_weighted = utils.CrossEntropyLoss2d(weight=nyuv2_frq)
model.train()
model.to(device)
CEL_weighted.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
global_step = 0
if args.last_ckpt:
global_step, args.start_epoch = load_ckpt(model, optimizer, args.last_ckpt, device)
lr_decay_lambda = lambda epoch: args.lr_decay_rate ** (epoch // args.lr_epoch_per_decay)
scheduler = LambdaLR(optimizer, lr_lambda=lr_decay_lambda)
writer = SummaryWriter(args.summary_dir)
for epoch in range(int(args.start_epoch), args.epochs):
scheduler.step(epoch)
local_count = 0
last_count = 0
end_time = time.time()
if epoch % args.save_epoch_freq == 0 and epoch != args.start_epoch:
save_ckpt(args.ckpt_dir, model, optimizer, global_step, epoch,
local_count, num_train)
for batch_idx, sample in enumerate(train_loader):
image = sample['image'].to(device)
depth = sample['depth'].to(device)
target_scales = [sample[s].to(device) for s in ['label', 'label2', 'label3', 'label4', 'label5']]
optimizer.zero_grad()
pred_scales = model(image, depth, args.checkpoint)
loss = CEL_weighted(pred_scales, target_scales)
loss.backward()
optimizer.step()
local_count += image.data.shape[0]
global_step += 1
if global_step % args.print_freq == 0 or global_step == 1:
time_inter = time.time() - end_time
count_inter = local_count - last_count
print_log(global_step, epoch, local_count, count_inter,
num_train, loss, time_inter)
end_time = time.time()
for name, param in model.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), global_step, bins='doane')
grid_image = make_grid(image[:3].clone().cpu().data, 3, normalize=True)
writer.add_image('image', grid_image, global_step)
grid_image = make_grid(depth[:3].clone().cpu().data, 3, normalize=True)
writer.add_image('depth', grid_image, global_step)
grid_image = make_grid(utils.color_label(torch.max(pred_scales[0][:3], 1)[1] + 1), 3, normalize=False,
range=(0, 255))
writer.add_image('Predicted label', grid_image, global_step)
grid_image = make_grid(utils.color_label(target_scales[0][:3]), 3, normalize=False, range=(0, 255))
writer.add_image('Groundtruth label', grid_image, global_step)
writer.add_scalar('CrossEntropyLoss', loss.data, global_step=global_step)
writer.add_scalar('Learning rate', scheduler.get_lr()[0], global_step=global_step)
last_count = local_count
save_ckpt(args.ckpt_dir, model, optimizer, global_step, args.epochs,
0, num_train)
print("Training completed ")
if __name__ == '__main__':
if not os.path.exists(args.ckpt_dir):
os.mkdir(args.ckpt_dir)
if not os.path.exists(args.summary_dir):
os.mkdir(args.summary_dir)
train()