A curated list of books/software/resources useful for thermoelectric materials research
Created and curated by Andrei Novitskii | Last update: May 21, 2023 | This list in Notion
Recommended literature
Software
Courses & lectures
Tutorials
Databases
Scientific research repositories
Research ethics
Search for scientific publications and books
Academic writing
Data visualization and presentation
Extra
Feedback and contributing
Books in Russian
- Киреев П.С. – Физика полупроводников (1975)
- Фистуль В.И. – Введение в физику полупроводников (1984)
- Шалимова К.В. – Физика полупроводников (1985)
- Иоффе А.Ф. – Физика полупроводников (1957)
- Драбл Дж., Голдсмид Г. – Теплопроводность полупроводников (1963)
- Тейлор Дж. – Введение в теорию ошибок (1985)
- Булат Л.П. – Термоэлектрическое охлаждение. Курс лекций (2002)
- Горелик С.С., Дашевский М.Я. – Материаловедение полупроводников и диэлектриков (2003)
- Гуртов В.А. – Физика твердого тела для инженеров (2012)
- Фистуль В.И. – Сильно легированные полупроводники (1967)
- Каллистер У.Д., мл. – Материаловедение: от технологии к применению (металлы, керамика, полимеры) (2011)
- Киттель Ч. – Введение в физику твердого тела (1962)
- Бонч-Бруевич В.Л. – Физика полупроводников (1977)
- Спицына Л.Г. – Физика полупроводников и металлов (1976)
- Павлов Л.П. – Методы измерения параметров полупроводниковых материалов (1987)
Books in English
- Goldsmid H.J. – Introduction to Thermoelectricity (2016)
- Kireev P.S. – Semiconductor Physics (1978)
- Seeger K. – Semiconductor Physics (1982)
- Fistul V.I. – Heavily doped semiconductors (1969)
- Taylor J. – An introduction to error analysis (1982)
- Simon S.H. – The Oxford Solid State Basics (2013)
- Callister W.D., Jr. – Materials science and engineering: An introduction (2018)
- Kittel C. – Introduction to Solid State Physics (2005)
- Ioffe A.F. – Semiconductor thermoelements and thermoelectric cooling (1957)
- Rowe D.M. – Handbook of thermoelectrics macro to nano (2006)
- Rowe D.M. – Thermoelectrics and its energy harvesting. Materials, preparation, and characterization in thermoelectrics (2012)
- Uher C. – Materials Aspect of Thermoelectricity (2017)
- Koumoto K., Mori T. – Thermoelectric Nanomaterials: Materials Design and Applications (2013)
- Drabble J.R. and Goldsmid H.J. – Thermal Conduction in Semiconductors (1961)
- Tritt, Terry M. – Thermal Conductivity: Theory, Properties, and Applications (Physics of Solids and Liquids) (2004)
- Tritt, Terry M. – Recent Trends in Thermoelectric Materials Research: Part I, Part II, Part III (2001)
Review papers
- Shevelkov, A.V. Chemical aspects of the design of thermoelectric materials. Russ. Chem. Rev. 2008, 77 (1), 1–19
Russian version: Шевельков, А.В. Химические аспекты создания термоэлектрических материалов. Успехи химии 2008, 77 (1), 3–18 - Dmitriev, A.V; Zvyagin, I.P. Current trends in the physics of thermoelectric materials. Physics-Uspekhi 2010, 53 (8), 789–803
Russian version: Дмитриев, А.В.; Звягин, И.П. Современные тенденции развития физики термоэлектрических материалов. Успехи физических наук 2010, 180 (8), 821–837 - Beretta, D.; et al. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. R Reports 2019, 138, 100501
- Brief history and introduction to Thermoelectricity at Jeff Snyder's group website.
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7 (2), 105–114
- Zevalkink, A.; et al. A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Appl. Phys. Rev. 2018, 5 (2), 021303
- Zeier, W.G.; Zevalkink, A.; Gibbs, Z.M.; Hautier, G.; Kanatzidis, M.G.; Snyder, G.J. Thinking like a chemist: Intuition in thermoelectric materials. Angew. Chemie Int. Ed. 2016, 55 (24), 6826–6841
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357 (6358), eaak9997
- Jia, N.; et al. Thermoelectric Materials and Transport Physics. Mater. Today Phys. 2021, 21, 100519.
Essential papers to read
General
- Freer, R.; et al. Key properties of inorganic thermoelectric materials — Tables. J. Phys. Energy 2022, 4 (2), 022002
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and old concepts in thermoelectric materials. Angew. Chemie Int. Ed. 2009, 48 (46), 8616–8639
- Kanatzidis, M.G. Nanostructured thermoelectrics: The new Paradigm? Chem. Mater. 2010, 22 (3), 648–659
- Wang, H.; LaLonde, A.D.; Pei, Y.; Snyder, G.J. The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 2013, 23 (12), 1586–1596
- Anand, S.; Wolverton, C.; Snyder, G.J. Thermodynamic guidelines for maximum solubility. Chem. Mater. 2022, 34 (4), 1638–1648
- Toriyama, M.Y.; Ganose, A.M.; Dylla, M.; Anand, S.; Park, J.; Brod, M.K.; Munro, J.M.; Persson, K.A.; Jain, A.; Snyder, G.J. How to analyse a Density of States. Mater. Today Electron. 2022, 1, 100002
- Goldsmid, H.J. Improving the thermoelectric figure of merit. Sci. Technol. Adv. Mater. 2021, 22 (1), 280–284
- Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116 (19), 12123–12149
- Zhao, L.-D.; Dravid, V.P.; Kanatzidis, M.G. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 2014, 7 (1), 251
- Vineis, C.J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M.G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22 (36), 3970–3980
- Gorai, P.; Stevanović, V.; Toberer, E.S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2017, 2 (9), 17053
- Polash, M.M.H.; Moseley, D.; Zhang, J.; Hermann, R.P.; Vashaee, D. Understanding and design of spin-driven thermoelectrics. Cell Reports Phys. Sci. 2021, 100614
- Snyder, G.J.; Snyder, A.H. Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 2017, 10 (11), 2280–2283
Follow up: Procedure to Calculate Device ZT from materials properties
Phonon transport
- Toberer, E.S.; Zevalkink, A.; Snyder, G.J. Phonon engineering through crystal chemistry. J. Mater. Chem. 2011, 21 (40), 15843
- Hanus, R.; Gurunathan, R.; Lindsay, L.; Agne, M.T.; Shi, J.; Graham, S.; Jeffrey Snyder, G. Thermal transport in defective and disordered materials. Appl. Phys. Rev. 2021, 8 (3), 031311
- Kuo, J.J.; Wood, M.; Slade, T.J.; Kanatzidis, M.G.; Snyder, G.J. Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries. Energy Environ. Sci. 2020, 13 (4), 1250–1258
- Hanus, R.; Agne, M.T.; Rettie, A.J.E.; Chen, Z.; Tan, G.; Chung, D.Y.; Kanatzidis, M.G.; Pei, Y.; Voorhees, P.W.; Snyder, G.J. Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency. Adv. Mater. 2019, 31 (21), 1900108
- Slade, T.J.; Anand, S.; Wood, M.; Male, J.P.; Imasato, K.; Cheikh, D.; Al Malki, M.M.; Agne, M.T.; Griffith, K.J.; Bux, S.K.; Wolverton, C.; Kanatzidis, M.G.; Snyder, G.J. Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors. Joule 2021, 5 (5), 1168–1182
- Gurunathan, R.; Hanus, R.; Dylla, M.; Katre, A.; Snyder, G.J. Analytical models of phonon–point-defect scattering. Phys. Rev. Appl. 2020, 13 (3), 034011
- Gurunathan, R.; Hanus, R.; Snyder, G.J. Alloy scattering of phonons. Mater. Horizons 2020, 7 (6), 1452–1456
- Agne, M.T.; Hanus, R.; Snyder, G.J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ. Sci. 2018, 11 (3), 609–616
- Kim, H.-S.; Kang, S.D.; Tang, Y.; Hanus, R.; Jeffrey Snyder, G. Dislocation strain as the mechanism of phonon scattering at grain boundaries. Mater. Horizons 2016, 3 (3), 234–240
- Agne, M T.; Voorhees, P.W.; Snyder, G.J. Phase transformation contributions to heat capacity and impact on thermal diffusivity, thermal conductivity, and thermoelectric performance. Adv. Mater. 2019, 31 (35), 1902980
Measurements
- Borup, K.A.; de Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M.I.; Müller, E.; Iversen, B.B.; Snyder, G.J. Measuring thermoelectric transport properties of materials. Energy Environ. Sci. 2015, 8 (2), 423–435
- Alleno, E.; Bérardan, D.; Byl, C.; Candolfi, C.; Daou, R.; Decourt, R.; Guilmeau, E.; Hébert, S.; Hejtmanek, J.; Lenoir, B.; Masschelein, P.; Ohorodnichuk, V.; Pollet, M.; Populoh, S.; Ravot, D.; Rouleau, O.; Soulier, M. Invited article: A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3. Rev. Sci. Instrum. 2015, 86 (1), 011301
Defects
- Zheng, Y.; Slade, T.J.; Hu, L.; Tan, X.Y.; Luo, Y.; Luo, Z.-Z.; Xu, J.; Yan, Q.; Kanatzidis, M.G. Defect engineering in thermoelectric materials: What have we learned? Chem. Soc. Rev. 2021, 50 (16), 9022–9054
- Anand, S.; Toriyama, M.Y.; Wolverton, C.; Haile, S.M.; Snyder, G.J. A Convergent understanding of charged defects. Accounts Mater. Res. 2022, 3 (7), 685–696
- Toriyama, M.Y.; Brod, M.K.; Snyder, G.J. Chemical interpretation of charged point defects in semiconductors: A case study of Mg2Si. ChemNanoMat 2022
Calculations & effective mass model
- Kim, S.; Hood, S.N.; Park, J.-S.; Whalley, L.D.; Walsh, A. Quick-start guide for first-principles modelling of point defects in crystalline materials. J. Phys. Energy 2020, 2 (3), 036001
- Goldsmid, H.J.; Sharp, J.W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements. J. Electron. Mater. 1999, 28 (7), 869–872 Follow up: Gibbs, Z.M.; Kim, H.-S.; Wang, H.; Snyder, G.J. Band gap estimation from temperature dependent Seebeck measurement—Deviations from the 2e|S|maxTmax relation. Appl. Phys. Lett. 2015, 106 (2), 022112
- Kim, H.S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3 (4), 041506
- Wang, H.; Gurunathan, R.; Fu, C.; Cui, R.; Zhu, T.; Snyder, G.J. Thermoelectric transport effects beyond single parabolic band and acoustic phonon scattering. Mater. Adv. 2022, 3 (2), 734–755
- Zhang, X.; Bu, Z.; Shi, X.; Chen, Z.; Lin, S.; Shan, B.; Wood, M.; Snyder, A.H.; Chen, L.; Snyder, G.J.; Pei, Y. Electronic quality factor for thermoelectrics. Sci. Adv. 2020, 6 (46), eabc0726
- Snyder, G.J.; Snyder, A.H.; Wood, M.; Gurunathan, R.; Snyder, B.H.; Niu, C. Weighted mobility. Adv. Mater. 2020, 32 (25), 2001537
- Snyder, G.J.; Pereyra, A.; Gurunathan, R. Effective mass from Seebeck coefficient. Adv. Funct. Mater. 2022, 32 (20), 2112772
- Crawford, C.M.; Bensen, E.A.; Vinton, H.A.; Toberer, E.S. Efficacy of the Method of Four Coefficients to Determine Charge-Carrier Scattering. Phys. Rev. Appl. 2021, 16 (2), 024004.
Data analysis and graphing
-
Python is a high-level, interpreted, general-purpose programming language, which seems to be one of the most popular to be applied for scientific research. In particular, it can be used for data analysis, calculations or graphing
free
🐍 Recommended environment: Anaconda distribution (see 'getting started' by Dr. Taylor Sparks)
🆘 Python scripts/programs useful for thermoelectric research
🎨 Python libraries for graphing: matplotlib, plotnine, seaborn, plotly, and bokeh
🤖 ChatGPT can help you to improve your code or even write a code for you following your human request -
OriginPro is one of the most popular data analysis and graphing software in academia
non-free
-
MagicPlot is a software for nonlinear fitting, plotting and data analysis. Alternative to OriginPro (macOS is ok)
non-free
-
gnuplot is a portable command-line driven graphing utility
free
-
DataGraph is a graphing and data analysis software application for the macOS operating system
non-free
-
GraphPad combines scientific graphing, comprehensive curve fitting, and data organization
non-free
-
SigmaPlot is a software package for scientific graphing and data analysis
non-free
-
Veusz is a scientific plotting and graphing program with a graphical user interface, designed to produce publication-ready 2D and 3D plots. In addition it can be used as a module in Python for plotting
free
-
TikZ & PGF is a
$\TeX$ macro package for creating graphs with a user-friendly syntax layerfree
-
Asymptote is a 2D & 3D
$\TeX$ -Aware Vector Graphics Languagefree
-
MATLAB is a multi-paradigm programming language and numeric computing environment
non-free
-
Octave is a programming language for scientific computing considered as an alternative to MATLAB
free
-
MathCAD is engineering math software that allows you to perform, analyze, and visualize your calculations
non-free
Writing
-
Mathcha is an online mathematics editor
free
-
MathType is a software application that allows the creation of mathematical notation for inclusion in Microsoft Word
non-free
-
LaTeX is a software system for document preparation. Some
$\TeX$ implementations:-
Overleaf is an open source online
$\LaTeX$ editorfree
-
WinEdt is a desktop Unicode editor primarily used for the creation of
$\TeX$ (or$\LaTeX$ ) documentsshareware
-
LyX is a document processor that combines the power and flexibility of
$\TeX/\LaTeX$ with the ease of use of a graphical interfacefree
- Other free implementations
-
Overleaf is an open source online
Reference managers that will help you collect, organize, annotate, cite, and share research:
Imaging
- Adobe Photoshop, Adobe InDesign & Adobe Illustrator
non-free
- Inkscape is an open source vector graphics editor (equivalent of Adobe Illustrator)
free
- GIMP is an open source image editor (alternative of Adobe Photoshop)
free
- ImageJ is a public domain Java image processing program (and more)
free
- WebPlotDigitizer is a tool to extract numerical data from the images of plots
free
- Blender3D is a modeling-and-rendering software, and it's open source
free
- Solid Edge Student Edition is a professional 3D CAD software
free
- Google SketchUp is a 3D modeling online suite for a broad range of drawing and design applications, good for easy sketches
free
X-ray/neutron diffraction patterns processing
- VESTA is a 3D visualization program for structural models, volumetric data such as electron/nuclear densities, and crystal morphologies
free
- Match! is an easy-to-use software for phase analysis using powder diffraction data
non-free
- Profex is an open-source program for phase identification, phase quantification, and Rietveld refinement
free
[suggested by Linda Abbassi] - The FullProf Suite is a set of several crystallographic programs mainly developed for Rietveld analysis of neutron or X-ray powder diffraction data
free
- PowderCell is a user-friendly shell for an quasi-simultaneous comparison between experimental data and calculated powder diffraction pattern including automatic refinement procedures
free
- QualX is a program able to identify crystal phase(s) from powder diffraction data (including qualitative analysis)
free
- PowDLL is a program for the interconversion between variable formats of powder X-ray files
free
- MAUD is a Rietveld extended program to perform the combined analysis
free
- TOPAS or TOPAS-Academic are fully functional Rietveld refinement programs for laboratory X-ray diffraction, synchrotron, single crystal
and neutron fixed wavelength and TOF data
non-free
- GSAS-II is an open source Python project for determination of crystal structures and diffraction-based materials characterization for crystalline solids on all scales using both powder and single-crystal diffraction and with both X-ray and neutron probes
free
- Jana is a crystallographic program focused to solution, refinement and interpretation of difficult, especially modulated structures
free
- Crystallography Open Database is an open-access collection of crystal structures of different kind of compounds
free
- X-ray is a program for processing X-ray spectra developed by Alexey Karpenkov
free
- XPowder is a software has for the identification, quantification and characterization of the crystalline components of solid samples
shareware
- XLENS diffraction software distributed by the Crystallography and X-ray Diffraction Laboratory (The Institute of Materials Science of Barcelona, Spain)
free
- Structure Data Converter & Editor by the Bilbao Crystallographic Server
free
- Wyckoff Position Calculator by the Bilbao Crystallographic Server
free
- Crystallography applets and simulation tools by EPFL
free
Electronic lab notebooks
- Notion is a project management and note-taking software
free
- Trello is a web-based, Kanban-style, list-making application
free
- eLabFTW is a free and open source electronic lab notebook
free
- JupyterLab is the latest web-based interactive development environment for notebooks, code, and data
free
Other
- Alloys is a program for alloy weight calculations developed by Alexey Karpenkov
- STDU Viewer is a viewer for multiple file formats (TIFF, PDF, DjVu, FB2, XPS, JBIG2)
- Notepad++ is a free and versatile Notepad software.
- Scripts for science and chemistry by François-Xavier Coudert
- Chemical equation balancer by webQC chemical portal
- Phase diagram creation by Chris Wolverton's group at Northwestern University
- Formation energy prediction by University of Houston
- ELATE is an online tool for analysis of elastic tensors
- CrystalNets is a web interface for topology identification of crystalline materials
- OA audit is a tool to compute your ‘Open Access Score’ and check which of your papers are available freely, and which are not
Massive open online course providers
Lecture Halls
- Thermoelectric seminars at Ioffe Institute (youtube)
- Online lecture hall FMS MSU
- Лекторий МФТИ
- MARVEL events by Materials Cloud
- Russian Colloquium on Modern Problems of Condensed Matter Physics
- International Seminar: Differential Geometry and Math Physics
- The Materials Project Seminar
- AFLOW Seminars
- Next Generation Solar Energy (NGSE) international conference series
Featured courses
Thermoelectrics
Thermoelectrics by G.J. Snyder group
- Introduction to Thermoelectricity by Mark Lundstrom and Ali Shakouri (Purdue University, USA), 2019. The course can be also found at nanoHUB.
- А.П. Новицкий “Термоэлектрические материалы” (НИТУ “МИСиС”, Россия), 2021. Слайды на английском доступны на Speaker Deck
Thermoelectric materials (in Russian) by Andrei Novitskii (NUST MISIS, Russia), 2021. The slides in English can be found on Speaker Deck - Thermoelectricity: From Atoms to Systems by Purdue University (USA), 2014. The course can be also found on nanoHUB.
Fundamentals
- А.О. Раевский “Физика твердого тела” (МФТИ, Россия), 2013
- Introduction to Solid State Chemistry by MIT (USA), 2017
- Semiconductor Fundamentals by Purdue University (USA), 2018. The course can be also found on nanoHUB or on edX.
- Курс лекций по основам современной физики МФТИ (Россия): Морозов А.И. (2019), Овчинкин В.А. (2019), Глазков В.Н. (2020)
- Introduction to Materials Science & Engineering by Taylor Sparks (University of Utah, USA), 2019
- Введение в материаловедение НИТУ “МИСиС” (Россия)
- Near-Equilibrium Transport: Fundamentals and Applications by Mark Lundstrom (Purdue University, USA), 2011. The course can be also found on nanoHUB.
- Materials Informatics by Taylor Sparks (University of Utah, USA), 2021-2022
Python and LaTeX
- Intro to Python programming for materials engineers by Taylor Sparks (University of Utah, USA), 2021
- Using Python for Research by Harvard, 2018
- Dive into LaTeX (in Russian) by Ivan Toftul (ITMO University, Russia), 2022
- Materials Project Workshop, 2021
Presentations
- Succeeding in Scientific Research by Darren Lipomi (University of California, USA), 2019
Research methods
Featured lectures
- M. Toriyama (Northwestern University, USA) “Thermoelectrics: Where Materials Science Meets Math and Physics”, 2022
- G. Jeffrey Snyder (Northwestern University, USA) “Phase boundary mapping to engineer dopant defects”
- Antoine Maignan (CRISMAT - Laboratoire de Crystallographie et Sciences des Matériaux, France) “Thermopower: principles and modern development”, 2021
- G. Jeffrey Snyder (Northwestern University, USA) “Grain boundary engineering: Thermal and electronic properties of materials”
- А.В. Шевельков (МГУ, Россия) “Зонная модель строения твердого тела”, 2011
- Е.А. Гудилин (МГУ, Россия) ”Реальная структура твердого тела - точечные дефекты”, 2020
- Д.А. Пшенай-Северин (ФТИ им. А.Ф. Иоффе, Россия) “Введение в метод функционала плотности и его применение для расчёта решёточных свойств”, 2021
- П.Ю. Коротаев (ФГУП «ВНИИА», Россия) “Машинное обучение: концепция и примеры в материаловедении“, 2021
- S. Datta (Purdue University, USA) “Bottom-up Approach to Thermoelectricity”, 2010
- M. Lundstrom (Purdue University, USA) “Thermoelectric Nanotechnology”, 2010
- А.П. Новицкий (НИТУ “МИСиС”, Россия) “Библиометрия и публикационный процесс“, 2021
- Creating effective slides: Design, Construction, and Use in Science by Jean-luc Doumont, 2013
- Structuring and writing a scientific manuscript & How to avoid grammatical errors in your manuscript by Jacob Wickham, 2022
💡 In general, on YouTube, you can find a tutorial for almost any task you have. Therefore, only a few tutorials are collected here.
- OriginPro: How to use? Tutorial #1, Tutorial #2 (both in Russian) by Andrei Novitskii (NUST MISIS, Russia)
- Making nice figures in Python by Taylor Sparks (University of Utah, USA):
- Crystallography Open Database tutorial by Taylor Sparks (University of Utah, USA)
- Tutorial of VESTA software for creating crystal structures by Taylor Sparks (University of Utah, USA)
- Андрей Новицкий (НИТУ “МИСиС”, Россия) “Построение модели кристаллической структуры в VESTA и уточнение структуры методом Ритвельда”
- Андрей Новицкий (НИТУ “МИСиС”, Россия) “Расчет теплоемкости в рамках модели Дебая в среде Mathcad”
- Scientific figures and artwork using Blender
- A brief guide to PowerPoint graphics by Lauren E Des Marteaux (Agriculture and Agri-Food Canada)
- Rietveld analysis of powder diffraction data: in TOPAS, GSAS II or FullProf
- Springer materials is a comprehensive database for identifying material properties which covers data from materials science, physics, physical and inorganic chemistry, engineering and other related fields.
- Crystallography Open Database is an open-access collection of crystal structures of huge amount of different compounds.
- Starrydata2 is an open web system to help material researchers to collect and share digital data from plot images in published papers.
- Pauling File and MPDS are two databases where phase diagrams linked with crystal structures and physical properties of all experimentally known inorganic compounds.
- The Materials Project is an open-access database offering material properties to accelerate the development of technology by predicting how new materials–both real and hypothetical–can be used.
- Open Quantum Materials Database (OQMD) is a database of DFT calculated thermodynamic and structural properties of materials.
- Materialis.AI is a tool that can predict the Seebeck, electrical conductivity, and power factor of a material.
- NIST Standard Reference Data (SRD) is a catalog of several databases by NIST.
- NIST Alloy Data is a thermophysical property database with a focus on unary, binary, and ternary metal systems.
- The Citrine is a materials recommendation engine for thermoelectrics that exposes a suite of machine learning-based models to estimate a material’s merits as a candidate thermoelectric.
- AFLOW is a globally available database of material compounds with calculated properties.
- MRL database (2013) is a large database of thermoelectric materials prepared by abstracting information from over 100 publications.
- NSM database with the properties of conventional semiconductors.
- The NIMS Materials Database (MatNavi): Polymers, inorganic material, metallic material and computational electronic structure.
- The Novel Materials Discovery (NOMAD) is a database of input and output files from more than 100 million high-quality calculations. It also includes notebooks for several materials informatics problems with experience levels from beginner to advanced.
- High Throughput Experimental Materials Database (HTEM DB) with composition, structure, optical, and electrical properties of thin films synthesized using combinatorial methods.
- MatWeb is a database of material properties including metals, ceramics, polymer and other engineering materials.
Also see data resources for materials science and materials databases
Books
- Landolt-Börnstein collection
- Haynes W.M. – Handbook of Chemistry and Physics
- George S. Brady, Henry R. Clauser, John A. Vaccari – Materials Handbook (Handbook) (2002)
- James F. Shackelford (Editor), William Alexander (Editor) – Materials Science and Engineering Handbook (2000)
- Lawrence E. Murr – Handbook of Materials Structures, Properties, Processing and Performance (2014)
- François Cardarelli – Materials Handbook: A Concise Desktop Reference (2008)
- Mendeley Data
- Zenodo
- MDR NIMS Materials Data Repository
- Figshare
- The Materials Data Facility (MDF)
- Materials Commons
- NIH Research Ethics Training
- CRediT (Contributor Roles Taxonomy) is a high-level taxonomy, including 14 roles, that can be used to represent the roles typically played by contributors to research outputs. The roles describe each contributor’s specific contribution to the scholarly output.
- Who Are Corresponding Authors?
- Best Practices for Using AI When Writing Scientific Manuscripts. Caution, Care, and Consideration: Creative Science Depends on It
- How bullying becomes a career tool by Täuber and Mahmoudi or How Bullying Manifests at Work — and How to Stop It by Praslova, Carucci, and Stokes
💡 AI copilot by scispace can help you read papers (see demonstration by Dr. Taylor Sparks)
- Connected papers is a visual tool to help researchers and applied scientists find and explore papers relevant to their field of work
free
- ResearchRabbit is a “citation-based literature mapping tool” available online
free
- Gecko is an open source tool to help you find the most relevant papers to your research and give you a more complete sense of the research landscape
free
- Google scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines
free
- Scopus is Elsevier's abstract and citation database
non-free
- Web of Science is a platform with multiple databases that provide reference and citation data from academic journals, conference proceedings, and other documents in various academic disciplines
non-free
- Several journal suggesters:
- Forums or chats
- telegram chat where you can ask for a paper to which you don’t have access (both English and Russian are appropriate)
- forum where you can ask for a paper to which you don’t have access
P.S. Emailing the corresponding author will work 99% of the time
🏴☠️ ☠️ 🏴☠️
- sci-hub is a shadow library website that provides free access to millions of research papers and books, without regard to copyright, by bypassing publishers' paywalls in various ways (sci-hub bot in Telegram)
- Nexus bot in Telegram
- twirpx is an elibrary for students
- zlibrary is the largest ebook library
- Robert Day and Barbara Gastel – How to Write and Publish a Scientific Paper [6th edition] (2006)
- Hilary Glasman-Deal – Science Research Writing For Non-Native Speakers of English (2009)
- Whitesides' Group: Writing a Paper | Russian translation: Как писать научную статью?
- How to ask questions? | Russian translation: Как задать вопрос после доклада?
Further reading
Title
Figures
Writing
- Beating the odds for journal acceptance
- Style Guides and the Garlic, Shallots, and Butter of Scientific Writing
- Increase Your Impact: Writing Tips to Reach a Broader Audience
- My Manuscript Was “Rejected without Review” from Chemistry of Materials: A Lesson in Burying the Lede
- Rejecting without Review: The Whys, the Hows
- Why Was My Paper Rejected without Review?
- Revising Manuscripts: Trying to Make Everyone Happy
- Suggesting Reviewers to Improve Your Manuscript
Software and strategies
- Grammarly is a typing assistant that reviews spelling, grammar, punctuation, clarity, engagement, and delivery mistakes
- The Hemingway App is an editor that highlights and corrects grammar, fluency, and sentence structure in order to help your writing read and look better
- The Writer’s Diet add-in for Microsoft Word is a diagnostic tool created by international writing expert Helen Sword to help academic, professional, and creative writers sharpen their style and pare unnecessary padding from their prose
- The ‘Uneven U’ writing strategy
- NIST Guide to the International System of Units: Basics, Rules and Style
- Purdue Online Writing Lab
Dictionaries and thesauruses
- The Merriam-Webster Dictionary of Synonyms and Antonyms (thesaurus)
- The Multitran dictionary specific for scientific terms
- Web sites to check the most common collocations: https://www.freecollocation.com or http://www.just-the-word.com/
To read:
- Michael Alley – The Craft of Scientific Presentations: Critical Steps to Succeed and Critical Errors to Avoid (2013)
- Steve Cranford – Promote or perish: Marketing yourself as a researcher (2022)
- Claus O. Wilke – Fundamentals of Data Visualization (2019)
- Nicolas P. Rougier – Scientific Visualization: Python + Matplotlib (2021)
- Preparing figures for publication and presentations by Ram Seshadri (2018)
To use:
- Python Graph Gallery is a collection of hundreds of charts made with Python
- From Data to Viz is a classification of chart types based on input data format. Caveats section is really helpful and please, don't let your friends
- Bunch of GitHub repos useful for graphing
- Colorbrewer is a tool that helps to create a color palette based on nature of your data
- To check is your color palette is safe for colorblind you can use color accessibility tool by Adobe or Color Blindness Simulator
- Diagrams.net is an online graph drawing software
- AutoDraw is a tool that pairs machine learning with drawings from talented artists to help you draw stuff fast
Icons, images, photos and templates for presentations
- The Noun Project is a website that aggregates and catalogs icons and stock photos that are created and uploaded by graphic designers around the world
- Canva is a graphic design platform, used to create social media graphics, presentations, posters, documents and other visual content
- Free Powerpoint templates and Google Slides themes for presentations
- Pexels is a free stock photos & videos you can use everywhere
- Pixabay is a free stock photography and royalty-free stock media website
- Unsplash is the internet’s source of freely-usable images
- Burst is a free stock photo platform that is powered by Shopify
- Picography is a free stock of photos that can be used for any project
- Needpix is a library of free photos
- unDraw is a library of SVG illustrations for any idea you can imagine and create
- BioRender is a scientifically accurate image library that can be used to create scientific figures, diagrams, and illustrations
Writing
- The base of academic writing: a powerful tool to diagnose your writing weaknesses
- The reverse outline: a great way to check your paper’s structure
Software
- AlternativeTo is a website which lists alternatives to web-based software, desktop computer software, and mobile apps
- TinyWow is a website with a huge selection of free, easy-to-use tools for PDF files, videos, images, and more
Career
- Lists of funding opportunities curated by Johns Hopkins University
- FlowCV is a free online resume builder and resume templates
Fundamentals
- Wiki: Introduction to Inorganic Chemistry
- 250 questions to a crystallographer by Gervais Chapuis
Education
- Learning anything is the platform for knowledge discovery
nanoHUB simulation tools
- Advanced Thermoelectric Power Generation Simulator for Waste Heat Recovery and Energy Harvesting
- Thin-Film and Multi-Element Thermoelectric Devices Simulator
- Thermoelectric Power Generator System Optimization and Cost Analysis
- Thermoelectric Power Factor Calculator for Superlattices
- Thermoelectric Power Factor Calculator for Nanocrystalline Composites
- Thermoelectric Generator Module with Convective Heat Transfer
- Optimized Workflow for Electronic and Thermoelectric Properties
- On-Chip Thermoelectric Cooling Tool
- Multiscale Modeling of Thermoelectric Cooler
- Linearized Boltzmann transport calculator for thermoelectric materials
Popular science
- Materialism Podcast Episode 4: Turning Heat into Electricity (with Paul Slusser); also see Episode 35: Spark Plasma Sintering
- Подкаст TBBT 287: Термоэлектричество, РИТЭГи и источники энергии далекого космоса (с Андреем Ворониным)
- Научно-популярные лекции А.В. Шевелькова (МГУ, Россия) "Термоэлектрики" и "Термоэлектрические материалы"
- Иванова А.С. (НИТУ “МИСиС”, Россия) “Термоэлектрические эффекты, генераторы и материалы”, 2021
TE applications
- habr: “Термоэлектрическая зарядка для гаджетов и для приготовления еды”
- habr: “FlameStower — зарядка телефона от костра”
- habr: “PowerPot — котелок, который может зарядить ваш смартфон”
- Mother bracelet is the fitness tracker that works from body heat
- Power watch is the watch powered by the body heat of its wearer
- Radioisotope Thermoelectric Generators (RTGs):
Data & statistics
- The International Energy Agency website
- Data on renewable energy technologies across the world
Further reading
Books in Russian
Физика твердого тела и полупроводников
- Ансельм А.И. – Введение в теорию полупроводников (1978)
- Аскеров Б.М. – Электронные явления переноса в полупроводниках (1985)
- Ашкрофт Н. – Физика твердого тела. Том 1 и 2 (1979)
- Бонч-Бруевич В.Л. – Сборник задач по физике полупроводников (1987)
- Воробьев Ю.В. – Методы исследования полупроводников (1988)
- Гаман В.И. – Физика полупроводниковых приборов (2000)
- Гантмахер В.Ф. – Электроны в неупорядоченных средах (2013)
- Голдсмид Г.Дж. – Задачи по физике твердого тела (1976)
- Дульнев Г.Н. – Теплопроводность смесей и композиционных материалов (1974)
- Емцев В.В. – Примеси и точечные дефекты в полупроводниках (1981)
- Забродский А.Г., Немов С.А., Равич Ю.И. – Электронные свойства неупорядоченных систем (2000)
- Займан Дж. – Электроны и фононы. Теория явлений переноса в твердых телах (1962)
- Зеегер К. – Физика полупроводников (1977)
- Ланно М. – Точечные дефекты в полупроводниках. Теория (1984)
- Матаре Г. – Электроника дефектов в полупроводниках (1974)
- Павлов Л.П. – Методы измерения параметров полупроводниковых материалов (1987)
- Равич Ю.И., Немов С.А. – Аморфные тела, сплавы и неоднородные среды (1998)
- Равич Ю.И., Немов С.А. – Физика неупорядоченных полупроводников (1994)
- Стильбанс Л.С. – Физика полупроводников (1967)
- Херман Х. – Полупроводниковые сверхрешетки (1989)
- Шевченко О.Ю. – Основы физики твердого тела. Учебное пособие (2010)
Термоэлектричество
- Бернштейн А.С. – Термоэлектрические генераторы (1956)
- Бурштейн А.И. – Физические основы расчета полупроводниковых термоэлектрических устройств (1962)
- Буряк А.А., Карпова Н.Б. – Очерки развития термоэлектричества (1988)
- Буряк А.А., Карпова Н.Б. – Термоэлектричество вчера, сегодня, завтра (1987)
- Гольцман Б.М. – Полупроводниковые термоэлектрические материалы на основе теллурида висмута (1972)
- Гольцман Б. М. – Пленочные термоэлементы. Физика и применение (1985)
- Кайданов В.И., Нуромский А.Б. – Электропроводность, термоэлектрические явления и теплопроводность полупроводников (1981)
- Иорданишвили Е.К. – Термоэлектрические источники питания (1968)
- Иоффе А.Ф. – Термоэлектрическое охлаждение (1956)
- Равич Ю.И. – Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS (1968)
Физическая химия и материаловедение
- Арсеньтьев П.П. – Физико-химические методы исследования металлургических процессов (1988)
- Арзамасов Б.Н. – Материаловедение (2002)
- Березоская В.В. и др. – Диаграммы состояния тройных систем (2016)
- Бокштейн Б.С. – Атомы блуждают по кристаллу (1984)
- Бокштейн Б.С. – Диффузия атомов и ионов в твердых телах (2005)
- Бокштейн Б.С. – Диффузия в металлах (1978)
- Бокштейн Б.С. – Краткий курс физической химии (2001)
- Бокштейн Б.С. – Физическая химия. Термодинамика и кинетика (2012)
- Болдырев В.В. - Фундаментальные основы механической активации, механосинтеза и механохимических технологий (2009)
- Жуховицкий А.А. – Физическая химия (1987)
- Ивенсен В.А. – Кинетика уплотнения металлических порошков при спекании (1971)
- Ивенсен В.А. – Феноменология спекания (1985)
- Карабосов Ю.С. – Новые материалы (2002)
- Кузьмич Ю.В – Механическое легирование (2005)
- Лахтин Ю.М., Леонтьева В.П. – Материаловедение (1990)
- Лившиц Б.Г., Крапошин В.С., Липецкий Я.Л. – Физические свойства металлов и сплавов (1980)
- Рыжонков Д.И. – Наноматериалы (2017)
- Шаскольская М.П. – Кристаллография (1984)
- Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. – Кристаллография, рентгенография и электронная микроскопия (1982)
Письмо
- Кириллова О.В. и др. – Краткие рекомендации по подготовке и оформлению научных статей в журналах, индексируемых в международных наукометрических базах данных (2017)
- Столяров А.В. – Сверстай диплом красиво: LaTeX за три дня (2010)
Books in English
Solid-state physics and chemistry
- Altmann S. – Band Theory of Solids - An Intro. from the Point of View of Symmetry (1991)
- Ashcroft N.W., Mermin N.D. – Solid State Physics (1976)
- Burns G., Glazer A.M. – Space Groups for Solid State Scientists (2013)
- Canadell E. – Orbital Approach to the Electronic Structure of Solids (2012)
- Cox P.A. – The Electronic Structure and Chemistry Of Solids (1987)
- Davies J.H. – The Physics of Low-Dimensional Semiconductors An Introduction (1998)
- Dresselhaus M.S. – Solid State Physics (2001)
- Glusker Jenny P., Lewis Mitchell, Rossi Miriam – Crystal Structure Analysis for Chemists and Biologists (1994)
- Goldsmid H.J., Drabble J.R. – Thermal Conduction in Semiconductors (1961)
- Hoffmann R. – Solids and Surfaces. A Chemists View of Bonding in Extended Structures (1989)
- Hook J.R. – Solid state physics (1991)
- Karplus M., Porter R.N. – Atoms and Molecules: An Introduction for Students of physical chemistry (1970)
- Kaxiras E. – Atomic Electronic Structure Solids (2008)
- Martin R. – Electronic Structure: Basic Theory and Practical Methods (2008)
- Mott F. Neville, Jones H. – The Theory of the Properties of Metals and Alloys (1945)
- Myers H.P. – Introductory Solid State Physics (1997)
- Pettifor D.G. – Bonding and Structure of Molecules and Solids (1995)
- Phillips J.C. – Bonds and Bands in Semiconductors (1973)
- Pierret R.F. – Advanced semiconductor fundamentals (2003)
- Pierret R.F. – Semiconductor device fundamentals (1956)
- Rao C.N.R., Muller A., Cheetham A.K. – The Chemistry of Nanomaterials Synthesis, Properties and Applications (2004)
- Shriver and Atkins – Inorganic Chemistry (2009)
- Simon S.H. – The Oxford Solid State Basics (2013)
- Smart L.E., Moore E.A. – Solid State Chemistry. An Introduction (2005)
- Szabo A. and Ostlund N.S. – Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (1996)
- Dresselhaus, M. - Solid State Properties: From Bulk to Nano (2018)
- Grundmann M. – The Physics of Semiconductors (2006)
- Kasap S., Capper P. – Handbook of Electronic and Photonic materials (2017)
- Kuncser V., Miu L. - Size Effects in Nanostructures. Basic and Applications (2014)
- Seeger K. – Semiconductor Physics (1982)
- Spaeth J.-M., Overhof H. – Point Defects in Semiconductors and Insulators (2003)
- Sutton A.D. – Electronic Structure of Materials (1993)
- West A.R. – Solid State Chemistry and Its Applications. Student Edition (2014)
Research methods
- Calvin S. – XAFS for Everyone (2013)
- Clearfield A., Reibenspies J., Bhuvanesh N. – Principles and Applications of Powder Diffraction (2008)
- Dinnebier R.E. – Powder Diffraction. Theory and Practice (2008)
- Fan C., Zhao Z. – Synchrotron Radiation in Materials Science. Light Sources, Techniques and Applications (2018)
- Goldstein J. – Scanning electron microscopy and X-ray microanalysis (2018)
- Pecharsky V.K., Zavalij P.Y. – Fundamentals of Powder Diffraction and Structural Characterization of Materials (2005)
- Sopicka-Lizer M. – High-Energy Ball Milling. Mechanochemical Processing of Nanopowders (2010)
- Ivensen V.A. – Densification of Metal Powders During Sintering (1973)
- Williams D.B., Carter C.B. – Transmission Electron Microscopy for Materials Science (1996)
- James F. Shackelford – Introduction to Materials Science for Engineers (2014)
- William F. Smith and Javad Hashemi – Foundations of Materials Science and Engineering (2009)
Thermoelectric materials
- Maciá-Barber E. – Thermoelectric Materials. Advances and Applications (2015)
- Ren Z. – Advanced thermoelectrics: Materials, contacts, devices, and systems (2017)
- Rowe D.M. – Handbook of thermoelectrics (1995)
- Rowe D.M. - Thermoelectrics and its energy harvesting: Modules, systems, and applications in thermoelectrics (2012)
- Laurence M.P. – Thermoelectric materials and devices (2016)
- Xiaodong W., Zhiming M.W. – Nanoscale Thermoelectrics (2014)
- Felser C. – Heusler Alloys (2016)
- Ghatak K.P. – Thermoelectric Power in Nanostructured Materials. Strong Magnetic Fields (2010)
- Goldsmid H.J. – Thermoelectric Refrigeration (1964)
- Zlatic V., Hewson A. – New Materials for Thermoelectric Applications: Theory and Experiment (2013)
- Kolobov A.V., Tominaga J. – Chalcogenides (2012)
- Li H., Wang Z.M. – Bismuth-Containing Compounds (2013)
- Nolas G.S., Sharp J., Goldsmid H.J. – Thermoelectrics: Basic Principles and New Materials Developments (2001)
- Ravindra N.M., et al. – Thermoelectrics. Fundamentals, Materials Selection, Properties, and Performance (2019)
- Skipidarov S., Nikitin M. – Novel Thermoelectric Materials and Device Design Concepts (2019)
- Wu J., et al. – Functional Metal Oxide Nanostructures (2012)
- Lin Y.-H., et al. – Oxide Thermoelectric Materials. From Basic Principles to Applications (2019)
- Park C.R. – Advanced Thermoelectric Materials (2019)
- Pineda D.D., Rezaniakolaei A. – Thermoelectric Energy Conversion. Basic Concepts and Device Applications (2017)
- Tilley J.D. Richard – Perovskites Structure-Property Relationships (2016)
- Zlatic V. – Modern Theory of Thermoelectricity (2014)
- Kurosaki K., Takagiwa Y. and Shi X. – Thermoelectric Materials. Principles and Concepts for Enhanced Properties (2020)
- Narducci D., Snyder G.J., Fanciulli C. – Advances in Thermoelectricity: Foundational Issues, Materials and Nanotechnology (2021)
- Powell A.V. – Inorganic Thermoelectric Materials: From Fundamental Concepts to Materials Design (2021)
Any comments, questions, and suggestions are welcome. Please feel free to send me pull requests or email.