-
Notifications
You must be signed in to change notification settings - Fork 0
/
LLaQo-chat.py
105 lines (85 loc) · 3.2 KB
/
LLaQo-chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os, sys, json
sys.path.append("../src/lavis/lavis/datasets/datasets")
import argparse
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import gradio as gr
sys.path.append("src/lavis")
sys.path.append("../")
from lavis.models import load_model_and_preprocess
from audio_processor import fbankProcessor
from factory import *
import hook
def generate_answer(
model,
fbank,
input_question,
):
output = model.generate(
{
"audio": fbank.unsqueeze(0).cuda(),
"prompt": input_question,
},
temperature=0.1,
)
result = {
"question": input_question,
"output": output,
}
return output
if __name__ == "__main__":
# demo.launch(show_api=False, share=True)
# hook()
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt', type=str, default='ckpts/checkpoint_2283000.pth', help='checkpoint path')
sub_parsers = parser.add_subparsers(dest="mode")
# Basic mode
basic_parser = sub_parsers.add_parser("basic")
basic_parser.add_argument('-f', '--full', action='store_true', help='Go through the full proces')
basic_parser.add_argument('-c', '--chat', action='store_true', help='Chat with LLaQo.')
basic_parser.add_argument('--session-id', type=str, default='', help='session id, if set to empty, system will allocate an id')
args = parser.parse_args()
# set up model
# checkpoint_path = load_latest_checkpoint()
checkpoint_path = args.ckpt
print(f"Using checkpoint {checkpoint_path}")
# pth = checkpoint_path.split("/")[-1].split(".")[0]
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model, _, _ = load_model_and_preprocess(
name="lam_vicuna_instruct",
model_type="vicuna1.5_7b-ft",
is_eval=True,
device=device,
)
model.load_from_pretrained(checkpoint_path)
audio_processor=fbankProcessor.build_processor()
test_audio = [
"test_audio/burgmuller_b-07-annot.wav",
"test_audio/conespressione_beethoven_casadesus.wav",
"test_audio/expertnovice_Careless Love-01.wav",
"test_audio/gestures_NOMETRO_FAST_LEG_1_audio.wav",
"test_audio/musicshape_sample0280.wav",
"test_audio/PISA_50.wav",
"test_audio/YCUPPE_CZ1516-26.wav"
]
def process_input(wav_path, input_text):
try:
waveform, fbank = audio_processor(wav_path)[:-1]
except Exception as e:
return f"Error in audio processing: {e}"
result = generate_answer(model, fbank, input_text)
return result
demo = gr.Interface(
fn=process_input,
inputs=[
gr.Audio(type="filepath", label="Audio File (WAV)", choices=test_audio),
gr.Textbox(label="Query for the audio")
],
outputs=gr.Textbox(label="Answer"),
title="LLaQo Demo (solo piano performance)",
description="Upload an audio file and enter your question regards to the performance. ",
# server_port=7861
)
# manual forwarding from school server: ssh -i ~/.ssh/id_rsa_apocrita -L 7860:rdg7:7860 [email protected]
demo.launch(server_name="rdg1")