forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mask-rcnn_r50_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
59 lines (56 loc) · 1.77 KB
/
mask-rcnn_r50_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
_base_ = [
'../_base_/models/mask-rcnn_r50_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
]
model = dict(
roi_head=dict(
bbox_head=dict(
num_classes=1203,
cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
loss_cls=dict(
type='SeesawLoss',
p=0.8,
q=2.0,
num_classes=1203,
loss_weight=1.0)),
mask_head=dict(num_classes=1203)),
test_cfg=dict(
rcnn=dict(
score_thr=0.0001,
# LVIS allows up to 300
max_per_img=300)))
# dataset settings
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='RandomChoiceResize',
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
dataset_type = 'LVISV1Dataset'
data_root = 'data/lvis_v1/'
train_dataloader = dict(
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/lvis_v1_train.json',
data_prefix=dict(img=''),
pipeline=train_pipeline))
val_dataloader = dict(
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/lvis_v1_val.json',
data_prefix=dict(img='')))
test_dataloader = val_dataloader
val_evaluator = dict(
type='LVISMetric',
ann_file=data_root + 'annotations/lvis_v1_val.json',
metric=['bbox', 'segm'])
test_evaluator = val_evaluator
train_cfg = dict(val_interval=24)