Public repository for Gmail interface papers using uhd-EEG
Author: Motoshige Sato1, Yasuo Kabe1, Sensho Nobe1, Akito Yoshida1, Masakazu Inoue1, Mayumi Shimizu1, Kenichi Tomeoka1, Shuntaro Sasai1*
1Araya Inc.
- Install requirements package.
pip install -r requirements.txt
- Save EEG/EMG of various pretreatment processes.
python uhd_eeg/plot_figures/make_preproc_files.py
- Visualization of pre-processing pipeline (Fig. 1)
python uhd_eeg/plot_figures/plot_preprocesssing.py
- Visualization of volume of speech (Fig. 1) and RMS of EMGs (Fig. 2)
python uhd_eeg/plot_figures/plot_rms.py
- Quantify the contamination level of EMG to EEG (mutual information, Fig. 2)
python uhd_eeg/plot_figures/plot_mis.py
- Train decoders. You can specify in
parallel_sets
which subjects and which sessions' data to train.python uhd_eeg/trainers/trainer.py -m hydra/launcher=joblib parallel_sets=subject1-1,subject1-2,subject1-3
- Copy the trained models and metrics to
data/
- Run the inference for online data and evaluate metrics (Table 1, 2, Fig. S1)
python uhd_eeg/plot_figures/evaluate_accs.py
- Visualization of electrodes used when hypothetically reducing electrode density (Fig. S1)
python uhd_eeg/plot_figures/show_montage_decimation.py
- Analysis on decoding contributions (integrated gradients, Fig.3-5, Fig.S2)
python uhd_eeg/plot_figures/plot_contribution.py