-
Notifications
You must be signed in to change notification settings - Fork 29
/
DESCRIPTION
107 lines (107 loc) · 2.77 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
Package: dtwclust
Type: Package
Title: Time Series Clustering Along with Optimizations for the Dynamic Time
Warping Distance
Version: 5.4.1
Date: 2018-06-10
Depends:
R (>= 3.2.0),
methods,
proxy (>= 0.4-16),
dtw
Imports:
parallel,
stats,
utils,
bigmemory,
clue,
cluster,
dplyr,
flexclust,
foreach,
ggplot2,
ggrepel,
Matrix,
nloptr,
RSpectra,
Rcpp,
RcppParallel (>= 4.4.0),
reshape2,
shiny,
shinyjs
Suggests:
doParallel,
knitr,
parallelDist,
rmarkdown,
testthat,
TSclust,
TSdist
LinkingTo:
Rcpp,
RcppArmadillo,
RcppParallel
Author: Alexis Sarda-Espinosa
Maintainer: Alexis Sarda <[email protected]>
Description: Time series clustering along with optimized techniques related
to the Dynamic Time Warping distance and its corresponding lower bounds.
Implementations of partitional, hierarchical, fuzzy, k-Shape and TADPole
clustering are available. Functionality can be easily extended with
custom distance measures and centroid definitions. Implementations of
DTW barycenter averaging, a distance based on global alignment kernels,
and the soft-DTW distance and centroid routines are also provided.
All included distance functions have custom loops optimized for the
calculation of cross-distance matrices, including parallelization support.
Several cluster validity indices are included.
URL: https://github.com/asardaes/dtwclust
BugReports: https://github.com/asardaes/dtwclust/issues
License: GPL-3
LazyData: TRUE
NeedsCompilation: yes
SystemRequirements: C++11, GNU make
RoxygenNote: 6.0.1
Collate:
'CENTROIDS-dba.R'
'CENTROIDS-sdtw-cent.R'
'CENTROIDS-shape-extraction.R'
'CLUSTERING-all-cent2.R'
'CLUSTERING-compare-clusterings.R'
'CLUSTERING-cvi-evaluators.R'
'CLUSTERING-ddist2.R'
'CLUSTERING-partitional-fuzzy.R'
'CLUSTERING-repeat-clustering.R'
'CLUSTERING-tadpole.R'
'CLUSTERING-tsclust-controls.R'
'CLUSTERING-tsclust.R'
'DISTANCES-dtw-basic.R'
'DISTANCES-dtw-lb.R'
'DISTANCES-dtw2.R'
'DISTANCES-gak.R'
'DISTANCES-lb-improved.R'
'DISTANCES-lb-keogh.R'
'DISTANCES-sbd.R'
'DISTANCES-sdtw.R'
'GENERICS-cvi.R'
'S4-Distmat.R'
'S4-PairTracker.R'
'S4-SparseDistmat.R'
'S4-tsclustFamily.R'
'S4-TSClusters-classes.R'
'S4-TSClusters-methods.R'
'SHINY-interactive-clustering.R'
'SHINY-ssdtwclust.R'
'SHINY-utils.R'
'UTILS-as-methods.R'
'UTILS-compute-envelope.R'
'UTILS-data.R'
'UTILS-expressions.R'
'UTILS-globals-internal.R'
'UTILS-nccc.R'
'UTILS-reinterpolate.R'
'UTILS-rng.R'
'UTILS-tslist.R'
'UTILS-utils.R'
'UTILS-zscore.R'
'pkg.R'
VignetteBuilder: knitr
Roxygen: list(markdown = TRUE)