forked from debjyoti0891/quantum-chain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qchain.py
243 lines (200 loc) · 8.39 KB
/
qchain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import datetime
import igraph
import itertools
import math
import os
import sys
import time
import shutil
from nntools.NNMapping import NNMapping
from nntools.RealLib import RealLib
from graphtools.topoGraphGen import TopoGraphGen
from qure import qureall
class QuantumChain:
''' An end to end quantum computing tool chain for mapping
quantum circuits to quantum computers. '''
def __init__(self):
self.__workDir = None
self.__topoDir = None
def __loadGraph(self,graphfile):
''' loads a topology graph '''
pass
def __loadC(self,qc):
''' Loads a quantum circuit '''
pass
def __getTopographs(self, graph, n, k=10, tries = 128):
''' Extract _k_ subgraphs with _n_ nodes from the topology graph.
Each subgraph ideally has a different topology '''
topoGen = TopoGraphGen()
topoGen.storeTopoGraph
topographFiles = topoGen.getTopoGraphFiles(graph, self.__topoDir)
if topographFiles == None:
topoGen.loadGraph(graph) #graphfile vertices noOfGraphs
topoGen.genTopoGraph(n,k,tries)
if self.__topoDir == None:
print('Error: Directory to store topology files must be specified')
return None
topoGen.storeTopoGraph(self.__topoDir)
topographFiles = topoGen.getTopoGraphFiles(graph)
return topographFiles
def setWorkDir(self,directory):
self.__workDir = directory
print('Work directory set : %s' % (self.__topoDir))
def setTopoDir(self, directory):
''' Set directory to store/load extracted subgraphs'''
self.__topoDir = directory
print('Topology graph directory set : %s' % (self.__topoDir))
def __loadSub(self, subfile):
''' loads subgraphs from a directory with details specified
in the subfile '''
pass
def __mapILPNN(self, topologyG, qc, qubitAssign, steps, outcirc, w=1 ):
''' maps a quantum circuit on the specified topology graph.
qubitAssign can be used to provide an initial mapping of the
logical qubits to the graph vertices '''
if w == None:
w = 1
#graph.gml circuit.real config.cfg n [w=1]
nnmap = NNMapping(topologyG, qc)
nnmap.loadConfig(qubitAssign)
# determine the number of steps
res, resultStr = nnmap.mapCircuit(steps,w)
print('Mapping result: ', resultStr)
if res!= None:
nnmap.writeNNCircuit(outcirc)
return res,resultStr
def mapNN(self,qc,graphfile,w=None):
''' Maps a quantum circuit on various topology subgraphs that
can be obtained as part of the quantum computer qubit interaction
graph. The number of solutions can be specfied by the parameter k '''
ckt = RealLib()
ckt.loadReal(qc)
# base name used for generated files
if qc.find('/') >= 0:
qcname = qc[qc.rfind('/')+1:]
if qcname.find('.') >= 0:
qcname = qcname[:qcname.rfind('.')]
# number of qubits
qubitCount = len(ckt.variables)
print('Loaded circuit %s with %d qubits' % (qc,qubitCount))
print('Base quantum computer configuration : %s' % (graphfile))
steps = qubitCount**2 # take n^2 steps --- might be lower ?
# check if qubitCount can be actually supported!
graph = igraph.read(graphfile)
vertexCount = len(graph.vs)
if qubitCount > vertexCount:
print('Error: Unable to map circuit (%d qubits) to QC graph (%d qubits)' \
% (qubitCount, vertexCount))
return
elif qubitCount == vertexCount:
# use original graphfile as topograph - trivial case
print('Only single topology can be used with %d qubits' % (qubitCount))
topographs = [graphfile]
else:
# generate or load topologies
topographs = self.__getTopographs(graphfile,qubitCount)
if topographs == None:
print('Topology graph generation failed')
sys.exit(1)
print('Number of topology graphs generated %d' % (len(topographs)))
# generate the solutions
sol = 0
logfile = self.__workDir+qcname+'.log'
for topog in topographs:
# TODO : check how the config works!!! vertex names?
if qubitCount > 4:
permCount = 25
else:
permCount = math.factorial(qubitCount)
perms = []
q = [i for i in range(qubitCount)]
i = 0
for p in itertools.permutations(q):
perms.append(p)
i = i+1
if i > permCount:
break
for p in perms:
sol = sol+1
# generate the configuration file
cfg = self.__workDir+qcname+'_'+str(sol)+'.cfg'
cfgFile = open(cfg,'w')
for i in range(qubitCount):
cfgFile.write(str(p[i])+' '+str(ckt.variables[i])+'\n')
cfgFile.close()
steps = qubitCount**2
if topog.find('/') >= 0:
topobase = topog[topog.rfind('/')+1:]
else:
topobase = topog
outcirc = self.__workDir+qcname+'_'+topobase[:topobase.rfind('.')]+'_'+str(sol)+'.real'
# generate the actual solution
start = time.time()
res,resultStr = self.__mapILPNN(topog, qc, cfg, steps, outcirc, w)
end = time.time()
print('Generated solution %s in %d seconds: %s' % (outcirc, start-end, resultStr))
#print some stats to file
with open(logfile, 'a') as outf:
#circuit file name, variables, gates, exec time, log time
outf.write(outcirc+',')
if res!= None:
outckt = RealLib()
outckt.loadReal(outcirc)
outf.write(str(len(outckt.variables))+',')
outf.write(str(outckt.computeDelay())+',')
else:
outf.write(',,')
outf.write('{:.2f}'.format(end-start))
outf.write(','+resultStr+',')
outf.write(datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y")+'\n')
if __name__ == '__main__':
if len(sys.argv) < 3:
print('Error : Invalid parameters.')
print('Usage : python3 qchain.py circ.real graph.gml [w]')
sys.exit(0)
chain = QuantumChain()
workdir = 'genfiles/'
if not os.path.isdir(workdir):
print('Creating work directory: %s' % (workdir))
os.mkdir(workdir)
circ = sys.argv[1]
if circ.rfind('/') >= 0:
base = circ[circ.rfind('/')+1:]
else:
base = circ
base = base[:base.rfind('.')]
if len(sys.argv) < 4:
w = None
w_str = base+'/'
else:
w = int(sys.argv[3])
w_str = base+'_'+sys.argv[3]+'/'
circdir = workdir + w_str
if not os.path.isdir(circdir):
print('Creating benchmark directory: %s' % (circdir))
os.mkdir(circdir)
topodir = circdir + 'topofiles/'
if not os.path.isdir(topodir):
print('Creating graph directory: %s' % (topodir))
os.mkdir(topodir)
chain.setWorkDir(circdir)
chain.setTopoDir(topodir)
if not w == None:
base = w_str
''' DELETES THE BASE [BENCHMARK NAME] Directory
AND EVERYTHING INSIDE IT AND RECREATES AN
EMPTY BASE DIRECTORY FOR A CLEAN START '''
try:
shutil.rmtree( os.path.join(workdir, base) )
os.mkdir( os.path.join(workdir, base) )
except:
pass
''' NN compliant circuit generation '''
chain.mapNN(sys.argv[1],sys.argv[2],w)
''' Fidelity exploration '''
workdir = os.path.join( os.getcwd(), workdir)
qureall.sanitize(workdir, base) # deletes cfg and real files for timed-out NN generation
qureall.auto_copy(workdir, base) # copies all cfg, real and gml files in organized folders under /allmaps directory
qureall.real_to_ibm(workdir, base) # coverts the real format netlist to equivalent ibm format netlist
qureall.QURE(workdir, base) # generates possible mappings of the NN ckt for IBMQ16
qureall.fidelity_calc(workdir, base) # calculates fidelities for the mappings generated in previous step