-
Notifications
You must be signed in to change notification settings - Fork 1
/
RNN_Card_Generator.py
123 lines (90 loc) · 3.68 KB
/
RNN_Card_Generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
from copy import deepcopy
def main(filename, mode):
raw_text = ''
with open(filename) as fp:
raw_text = fp.read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))
n_chars = len(raw_text)
n_vocab = len(chars)
print('Total characters: {}'.format(n_chars))
print('Total vocab: {}'.format(n_vocab))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 50
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i+seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print('Total patterns: {}'.format(n_patterns))
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
if mode == 'create':
create_rnn(X, y, model)
elif mode == 'predict':
generate(dataX, int_to_char, n_vocab, model)
def create_rnn(X, y, model):
# define the checkpoint
filepath = 'checkpoints/weights-improvement-{epoch:02d}-{loss:.4f}.hdf5'
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
model.fit(X, y, validation_split=0.1, epochs=50, batch_size=50, callbacks=callbacks_list)
def generate(dataX, int_to_char, n_vocab, model):
# load the network weights
filename = "checkpoints/weights-improvement-12-1.0078.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# pick a random seed
start = numpy.random.randint(0, len(dataX)-1)
for diversity in [0.3]:
pattern = deepcopy(dataX[start])
# print("Diversity: {} Seed:".format(diversity))
# print("\"" + ''.join([int_to_char[value] for value in pattern]) + "\"")
# generate characters
for i in range(10000):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(n_vocab)
prediction = model.predict(x, verbose=0)
index = sample(prediction, diversity)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(result, end='')
pattern.append(index)
pattern = pattern[1:len(pattern)]
# print("\nDone.")
def sample(preds, temperature=1.0):
# helper function to sample an index from a probability array
preds = numpy.asarray(preds).astype('float64')
preds = numpy.log(preds) / temperature
exp_preds = numpy.exp(preds)
preds = exp_preds / numpy.sum(exp_preds)
probas = numpy.random.multinomial(1, preds[0], 1)
return numpy.argmax(probas)
if __name__=='__main__':
import sys
sys.exit(main(sys.argv[1], sys.argv[2]))