-
Notifications
You must be signed in to change notification settings - Fork 0
/
log1p.c
187 lines (171 loc) · 5.42 KB
/
log1p.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000, 2003, 2011 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double log1p(double x);
*
* DESCRIPTION
*
* Compute the relative error logarithm.
*
* log(1 + x)
*
* NOTES
*
* This code is a translation of the Fortran subroutine `dlnrel'
* written by W. Fullerton of Los Alamos Scientific Laboratory.
*/
/* Every currently known platform has log1p (which is C99),
but NetBSD/OpenBSD were at least at one time inaccurate */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "nmath.h"
/* want to compile log1p as Rlog1p if HAVE_LOG1P && !HAVE_WORKING_LOG1P */
#if defined(HAVE_LOG1P) && !defined(HAVE_WORKING_LOG1P)
#undef HAVE_LOG1P
#endif
#ifndef HAVE_LOG1P
double log1p(double x)
{
/* series for log1p on the interval -.375 to .375
* with weighted error 6.35e-32
* log weighted error 31.20
* significant figures required 30.93
* decimal places required 32.01
*/
const static double alnrcs[43] = {
+.10378693562743769800686267719098e+1,
-.13364301504908918098766041553133e+0,
+.19408249135520563357926199374750e-1,
-.30107551127535777690376537776592e-2,
+.48694614797154850090456366509137e-3,
-.81054881893175356066809943008622e-4,
+.13778847799559524782938251496059e-4,
-.23802210894358970251369992914935e-5,
+.41640416213865183476391859901989e-6,
-.73595828378075994984266837031998e-7,
+.13117611876241674949152294345011e-7,
-.23546709317742425136696092330175e-8,
+.42522773276034997775638052962567e-9,
-.77190894134840796826108107493300e-10,
+.14075746481359069909215356472191e-10,
-.25769072058024680627537078627584e-11,
+.47342406666294421849154395005938e-12,
-.87249012674742641745301263292675e-13,
+.16124614902740551465739833119115e-13,
-.29875652015665773006710792416815e-14,
+.55480701209082887983041321697279e-15,
-.10324619158271569595141333961932e-15,
+.19250239203049851177878503244868e-16,
-.35955073465265150011189707844266e-17,
+.67264542537876857892194574226773e-18,
-.12602624168735219252082425637546e-18,
+.23644884408606210044916158955519e-19,
-.44419377050807936898878389179733e-20,
+.83546594464034259016241293994666e-21,
-.15731559416479562574899253521066e-21,
+.29653128740247422686154369706666e-22,
-.55949583481815947292156013226666e-23,
+.10566354268835681048187284138666e-23,
-.19972483680670204548314999466666e-24,
+.37782977818839361421049855999999e-25,
-.71531586889081740345038165333333e-26,
+.13552488463674213646502024533333e-26,
-.25694673048487567430079829333333e-27,
+.48747756066216949076459519999999e-28,
-.92542112530849715321132373333333e-29,
+.17578597841760239233269760000000e-29,
-.33410026677731010351377066666666e-30,
+.63533936180236187354180266666666e-31,
};
#ifdef NOMORE_FOR_THREADS
static int nlnrel = 0;
static double xmin = 0.0;
if (xmin == 0.0) xmin = -1 + sqrt(DBL_EPSILON);/*was sqrt(d1mach(4)); */
if (nlnrel == 0) /* initialize chebychev coefficients */
nlnrel = chebyshev_init(alnrcs, 43, DBL_EPSILON/20);/*was .1*d1mach(3)*/
#else
# define nlnrel 22
const static double xmin = -0.999999985;
/* 22: for IEEE double precision where DBL_EPSILON = 2.22044604925031e-16 */
#endif
if (x == 0.) return 0.;/* speed */
if (x == -1) return(ML_NEGINF);
if (x < -1) ML_ERR_return_NAN;
if (fabs(x) <= .375) {
/* Improve on speed (only);
again give result accurate to IEEE double precision: */
if(fabs(x) < .5 * DBL_EPSILON)
return x;
if( (0 < x && x < 1e-8) || (-1e-9 < x && x < 0))
return x * (1 - .5 * x);
/* else */
return x * (1 - x * chebyshev_eval(x / .375, alnrcs, nlnrel));
}
/* else */
if (x < xmin) {
/* answer less than half precision because x too near -1 */
ML_ERROR(ME_PRECISION, "log1p");
}
return log(1 + x);
}
#endif
#ifndef HAVE_HYPOT
/* Used as a substitute for the C99 function hypot, which all currently
known platforms have */
/* hypot(a,b) finds sqrt(a^2 + b^2)
* without overflow or destructive underflow.
*/
double hypot(double a, double b)
{
double p, r, s, t, tmp, u;
if(ISNAN(a) || ISNAN(b)) /* propagate Na(N)s: */
return
#ifdef IEEE_754
a + b;
#else
ML_NAN;
#endif
if (!R_FINITE(a) || !R_FINITE(b)) {
return ML_POSINF;
}
p = fmax2(fabs(a), fabs(b));
if (p != 0.0) {
/* r = (min(|a|,|b|) / p) ^2 */
tmp = fmin2(fabs(a), fabs(b))/p;
r = tmp * tmp;
for(;;) {
t = 4.0 + r;
/* This was a test of 4.0 + r == 4.0, but optimizing
compilers nowadays infinite loop on that. */
if(fabs(r) < 2*DBL_EPSILON) break;
s = r / t;
u = 1. + 2. * s;
p *= u ;
/* r = (s / u)^2 * r */
tmp = s / u;
r *= tmp * tmp;
}
}
return p;
}
#endif