-
Notifications
You must be signed in to change notification settings - Fork 0
/
pt.c
83 lines (75 loc) · 2.57 KB
/
pt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* R : A Computer Language for Statistical Data Analysis
* Copyright (C) 1995, 1996 Robert Gentleman and Ross Ihaka
* Copyright (C) 2000-2007 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*/
#include "nmath.h"
#include "dpq.h"
double pt(double x, double n, int lower_tail, int log_p)
{
/* return P[ T <= x ] where
* T ~ t_{n} (t distrib. with n degrees of freedom).
* --> ./pnt.c for NON-central
*/
double val, nx;
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(n))
return x + n;
#endif
if (n <= 0.0) ML_ERR_return_NAN;
if(!R_FINITE(x))
return (x < 0) ? R_DT_0 : R_DT_1;
if(!R_FINITE(n))
return pnorm(x, 0.0, 1.0, lower_tail, log_p);
#ifdef R_version_le_260
if (n > 4e5) { /*-- Fixme(?): test should depend on `n' AND `x' ! */
/* Approx. from Abramowitz & Stegun 26.7.8 (p.949) */
val = 1./(4.*n);
return pnorm(x*(1. - val)/sqrt(1. + x*x*2.*val), 0.0, 1.0,
lower_tail, log_p);
}
#endif
nx = 1 + (x/n)*x;
/* FIXME: This test is probably losing rather than gaining precision,
* now that pbeta(*, log_p = TRUE) is much better.
* Note however that a version of this test *is* needed for x*x > D_MAX */
if(nx > 1e100) { /* <==> x*x > 1e100 * n */
/* Danger of underflow. So use Abramowitz & Stegun 26.5.4
pbeta(z, a, b) ~ z^a(1-z)^b / aB(a,b) ~ z^a / aB(a,b),
with z = 1/nx, a = n/2, b= 1/2 :
*/
double lval;
lval = -0.5*n*(2*log(fabs(x)) - log(n))
- lbeta(0.5*n, 0.5) - log(0.5*n);
val = log_p ? lval : exp(lval);
} else {
val = (n > x * x)
? pbeta (x * x / (n + x * x), 0.5, n / 2., /*lower_tail*/0, log_p)
: pbeta (1. / nx, n / 2., 0.5, /*lower_tail*/1, log_p);
}
/* Use "1 - v" if lower_tail and x > 0 (but not both):*/
if(x <= 0.)
lower_tail = !lower_tail;
if(log_p) {
if(lower_tail) return log1p(-0.5*exp(val));
else return val - M_LN2; /* = log(.5* pbeta(....)) */
}
else {
val /= 2.;
return R_D_Cval(val);
}
}