-
Notifications
You must be signed in to change notification settings - Fork 0
/
ptukey.c
409 lines (332 loc) · 11.1 KB
/
ptukey.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000--2007 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double ptukey(q, rr, cc, df, lower_tail, log_p);
*
* DESCRIPTION
*
* Computes the probability that the maximum of rr studentized
* ranges, each based on cc means and with df degrees of freedom
* for the standard error, is less than q.
*
* The algorithm is based on that of the reference.
*
* REFERENCE
*
* Copenhaver, Margaret Diponzio & Holland, Burt S.
* Multiple comparisons of simple effects in
* the two-way analysis of variance with fixed effects.
* Journal of Statistical Computation and Simulation,
* Vol.30, pp.1-15, 1988.
*/
#include "nmath.h"
#include "dpq.h"
static double wprob(double w, double rr, double cc)
{
/* wprob() :
This function calculates probability integral of Hartley's
form of the range.
w = value of range
rr = no. of rows or groups
cc = no. of columns or treatments
ir = error flag = 1 if pr_w probability > 1
pr_w = returned probability integral from (0, w)
program will not terminate if ir is raised.
bb = upper limit of legendre integration
iMax = maximum acceptable value of integral
nleg = order of legendre quadrature
ihalf = int ((nleg + 1) / 2)
wlar = value of range above which wincr1 intervals are used to
calculate second part of integral,
else wincr2 intervals are used.
C1, C2, C3 = values which are used as cutoffs for terminating
or modifying a calculation.
M_1_SQRT_2PI = 1 / sqrt(2 * pi); from abramowitz & stegun, p. 3.
M_SQRT2 = sqrt(2)
xleg = legendre 12-point nodes
aleg = legendre 12-point coefficients
*/
#define nleg 12
#define ihalf 6
/* looks like this is suboptimal for double precision.
(see how C1-C3 are used) <MM>
*/
/* const double iMax = 1.; not used if = 1*/
const static double C1 = -30.;
const static double C2 = -50.;
const static double C3 = 60.;
const static double bb = 8.;
const static double wlar = 3.;
const static double wincr1 = 2.;
const static double wincr2 = 3.;
const static double xleg[ihalf] = {
0.981560634246719250690549090149,
0.904117256370474856678465866119,
0.769902674194304687036893833213,
0.587317954286617447296702418941,
0.367831498998180193752691536644,
0.125233408511468915472441369464
};
const static double aleg[ihalf] = {
0.047175336386511827194615961485,
0.106939325995318430960254718194,
0.160078328543346226334652529543,
0.203167426723065921749064455810,
0.233492536538354808760849898925,
0.249147045813402785000562436043
};
double a, ac, pr_w, b, binc, c, cc1,
pminus, pplus, qexpo, qsqz, rinsum, wi, wincr, xx;
LDOUBLE blb, bub, einsum, elsum;
int j, jj;
qsqz = w * 0.5;
/* if w >= 16 then the integral lower bound (occurs for c=20) */
/* is 0.99999999999995 so return a value of 1. */
if (qsqz >= bb)
return 1.0;
/* find (f(w/2) - 1) ^ cc */
/* (first term in integral of hartley's form). */
pr_w = 2 * pnorm(qsqz, 0.,1., 1,0) - 1.; /* erf(qsqz / M_SQRT2) */
/* if pr_w ^ cc < 2e-22 then set pr_w = 0 */
if (pr_w >= exp(C2 / cc))
pr_w = pow(pr_w, cc);
else
pr_w = 0.0;
/* if w is large then the second component of the */
/* integral is small, so fewer intervals are needed. */
if (w > wlar)
wincr = wincr1;
else
wincr = wincr2;
/* find the integral of second term of hartley's form */
/* for the integral of the range for equal-length */
/* intervals using legendre quadrature. limits of */
/* integration are from (w/2, 8). two or three */
/* equal-length intervals are used. */
/* blb and bub are lower and upper limits of integration. */
blb = qsqz;
binc = (bb - qsqz) / wincr;
bub = blb + binc;
einsum = 0.0;
/* integrate over each interval */
cc1 = cc - 1.0;
for (wi = 1; wi <= wincr; wi++) {
elsum = 0.0;
a = (double)(0.5 * (bub + blb));
/* legendre quadrature with order = nleg */
b = (double)(0.5 * (bub - blb));
for (jj = 1; jj <= nleg; jj++) {
if (ihalf < jj) {
j = (nleg - jj) + 1;
xx = xleg[j-1];
} else {
j = jj;
xx = -xleg[j-1];
}
c = b * xx;
ac = a + c;
/* if exp(-qexpo/2) < 9e-14, */
/* then doesn't contribute to integral */
qexpo = ac * ac;
if (qexpo > C3)
break;
pplus = 2 * pnorm(ac, 0., 1., 1,0);
pminus= 2 * pnorm(ac, w, 1., 1,0);
/* if rinsum ^ (cc-1) < 9e-14, */
/* then doesn't contribute to integral */
rinsum = (pplus * 0.5) - (pminus * 0.5);
if (rinsum >= exp(C1 / cc1)) {
rinsum = (aleg[j-1] * exp(-(0.5 * qexpo))) * pow(rinsum, cc1);
elsum += rinsum;
}
}
elsum *= (((2.0 * b) * cc) * M_1_SQRT_2PI);
einsum += elsum;
blb = bub;
bub += binc;
}
/* if pr_w ^ rr < 9e-14, then return 0 */
pr_w += (double) einsum;
if (pr_w <= exp(C1 / rr))
return 0.;
pr_w = pow(pr_w, rr);
if (pr_w >= 1.)/* 1 was iMax was eps */
return 1.;
return pr_w;
} /* wprob() */
double ptukey(double q, double rr, double cc, double df,
int lower_tail, int log_p)
{
/* function ptukey() [was qprob() ]:
q = value of studentized range
rr = no. of rows or groups
cc = no. of columns or treatments
df = degrees of freedom of error term
ir[0] = error flag = 1 if wprob probability > 1
ir[1] = error flag = 1 if qprob probability > 1
qprob = returned probability integral over [0, q]
The program will not terminate if ir[0] or ir[1] are raised.
All references in wprob to Abramowitz and Stegun
are from the following reference:
Abramowitz, Milton and Stegun, Irene A.
Handbook of Mathematical Functions.
New York: Dover publications, Inc. (1970).
All constants taken from this text are
given to 25 significant digits.
nlegq = order of legendre quadrature
ihalfq = int ((nlegq + 1) / 2)
eps = max. allowable value of integral
eps1 & eps2 = values below which there is
no contribution to integral.
d.f. <= dhaf: integral is divided into ulen1 length intervals. else
d.f. <= dquar: integral is divided into ulen2 length intervals. else
d.f. <= deigh: integral is divided into ulen3 length intervals. else
d.f. <= dlarg: integral is divided into ulen4 length intervals.
d.f. > dlarg: the range is used to calculate integral.
M_LN2 = log(2)
xlegq = legendre 16-point nodes
alegq = legendre 16-point coefficients
The coefficients and nodes for the legendre quadrature used in
qprob and wprob were calculated using the algorithms found in:
Stroud, A. H. and Secrest, D.
Gaussian Quadrature Formulas.
Englewood Cliffs,
New Jersey: Prentice-Hall, Inc, 1966.
All values matched the tables (provided in same reference)
to 30 significant digits.
f(x) = .5 + erf(x / sqrt(2)) / 2 for x > 0
f(x) = erfc( -x / sqrt(2)) / 2 for x < 0
where f(x) is standard normal c. d. f.
if degrees of freedom large, approximate integral
with range distribution.
*/
#define nlegq 16
#define ihalfq 8
/* const double eps = 1.0; not used if = 1 */
const static double eps1 = -30.0;
const static double eps2 = 1.0e-14;
const static double dhaf = 100.0;
const static double dquar = 800.0;
const static double deigh = 5000.0;
const static double dlarg = 25000.0;
const static double ulen1 = 1.0;
const static double ulen2 = 0.5;
const static double ulen3 = 0.25;
const static double ulen4 = 0.125;
const static double xlegq[ihalfq] = {
0.989400934991649932596154173450,
0.944575023073232576077988415535,
0.865631202387831743880467897712,
0.755404408355003033895101194847,
0.617876244402643748446671764049,
0.458016777657227386342419442984,
0.281603550779258913230460501460,
0.950125098376374401853193354250e-1
};
const static double alegq[ihalfq] = {
0.271524594117540948517805724560e-1,
0.622535239386478928628438369944e-1,
0.951585116824927848099251076022e-1,
0.124628971255533872052476282192,
0.149595988816576732081501730547,
0.169156519395002538189312079030,
0.182603415044923588866763667969,
0.189450610455068496285396723208
};
double ans, f2, f21, f2lf, ff4, otsum, qsqz, rotsum, t1, twa1, ulen, wprb;
int i, j, jj;
#ifdef IEEE_754
if (ISNAN(q) || ISNAN(rr) || ISNAN(cc) || ISNAN(df))
ML_ERR_return_NAN;
#endif
if (q <= 0)
return R_DT_0;
/* df must be > 1 */
/* there must be at least two values */
if (df < 2 || rr < 1 || cc < 2) ML_ERR_return_NAN;
if(!R_FINITE(q))
return R_DT_1;
if (df > dlarg)
return R_DT_val(wprob(q, rr, cc));
/* calculate leading constant */
f2 = df * 0.5;
/* lgammafn(u) = log(gamma(u)) */
f2lf = ((f2 * log(df)) - (df * M_LN2)) - lgammafn(f2);
f21 = f2 - 1.0;
/* integral is divided into unit, half-unit, quarter-unit, or */
/* eighth-unit length intervals depending on the value of the */
/* degrees of freedom. */
ff4 = df * 0.25;
if (df <= dhaf) ulen = ulen1;
else if (df <= dquar) ulen = ulen2;
else if (df <= deigh) ulen = ulen3;
else ulen = ulen4;
f2lf += log(ulen);
/* integrate over each subinterval */
ans = 0.0;
for (i = 1; i <= 50; i++) {
otsum = 0.0;
/* legendre quadrature with order = nlegq */
/* nodes (stored in xlegq) are symmetric around zero. */
twa1 = (2 * i - 1) * ulen;
for (jj = 1; jj <= nlegq; jj++) {
if (ihalfq < jj) {
j = jj - ihalfq - 1;
t1 = (f2lf + (f21 * log(twa1 + (xlegq[j] * ulen))))
- (((xlegq[j] * ulen) + twa1) * ff4);
} else {
j = jj - 1;
t1 = (f2lf + (f21 * log(twa1 - (xlegq[j] * ulen))))
+ (((xlegq[j] * ulen) - twa1) * ff4);
}
/* if exp(t1) < 9e-14, then doesn't contribute to integral */
if (t1 >= eps1) {
if (ihalfq < jj) {
qsqz = q * sqrt(((xlegq[j] * ulen) + twa1) * 0.5);
} else {
qsqz = q * sqrt(((-(xlegq[j] * ulen)) + twa1) * 0.5);
}
/* call wprob to find integral of range portion */
wprb = wprob(qsqz, rr, cc);
rotsum = (wprb * alegq[j]) * exp(t1);
otsum += rotsum;
}
/* end legendre integral for interval i */
/* L200: */
}
/* if integral for interval i < 1e-14, then stop.
* However, in order to avoid small area under left tail,
* at least 1 / ulen intervals are calculated.
*/
if (i * ulen >= 1.0 && otsum <= eps2)
break;
/* end of interval i */
/* L330: */
ans += otsum;
}
if(otsum > eps2) { /* not converged */
ML_ERROR(ME_PRECISION, "ptukey");
}
if (ans > 1.)
ans = 1.;
return R_DT_val(ans);
}