Skip to content

Latest commit

 

History

History
41 lines (41 loc) · 1.22 KB

README.md

File metadata and controls

41 lines (41 loc) · 1.22 KB

Multi Label Classification of short Texts of Science Association
(多标签文本分类,短文本分类 LSTM)

环境安装 (environment)

  • python 3.7.10
  • tensorflow 1.15.0
  • kares 2.2.4
  • gensim 3.8.3
  • pands 1.2.4
  • pydot 1.4.1
  • tqdm 4.59.0
  • scikit-learn 0.24.1

使用说明 (Instructions)

运行

python37 train.py

输出

  • word2vec output dir
    out/data/embedings
  • Train model output
    out/data/model
  • Data set preprocessing
    out/data/multi_label

参考/感谢 (Thanks)


Reference

For citing this work, you can refer to the present GitHub project. For example, with BibTeX:

@misc{SA_Classification,
    howpublished = {\url{https://github.com/atom/SA_Classification}},
    title = {SA_Classification},
    author = {Xiaolong Liu},
    publisher = {GitHub},
    year = {2021}
}