-
Notifications
You must be signed in to change notification settings - Fork 36
Benchmarks used for `HPOBench: A Collection of Reproducible Multi Fidelity Benchmark Problems for HPO`
Katharina Eggensperger edited this page Sep 19, 2022
·
4 revisions
For HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
we used the following
family | container version | name in the paper | benchmarks | Reference |
---|---|---|---|---|
nas.nasbench_201 | 0.0.5 | NB201 | [Cifar10ValidNasBench201BenchmarkOriginal , Cifar100NasBench201BenchmarkOriginal , ImageNetNasBench201BenchmarkOriginal ] |
paper |
nas.nasbench_101 | 0.0.4 | NB101 | [NASCifar10ABenchmark , NASCifar10BBenchmark , NASCifar10CBenchmark ] |
paper |
nas.tabular_benchmarks | 0.0.5 | NBHPO | [SliceLocalizationBenchmarkOriginal , ProteinStructureBenchmarkOriginal , NavalPropulsionBenchmarkOriginal , ParkinsonsTelemonitoringBenchmarkOriginal ] |
paper |
nas.nasbench_1shot1 | 0.0.4 | NB1SHOT1 | [NASBench1shot1SearchSpace1Benchmark , NASBench1shot1SearchSpace2Benchmark , NASBench1shot1SearchSpace3Benchmark ] |
paper |
ml.pybnn | 0.0.4 | BNN | [BNNOnProteinStructure , BNNOnYearPrediction ] |
paper |
rl.cartpole | 0.0.4 | Cartpole | [CartpoleReduced ] |
paper |
surrogates.paramnet_benchmark | 0.0.4 | Net | [ParamNetReducedAdultOnTimeBenchmark , ParamNetReducedHiggsOnTimeBenchmark , ParamNetReducedLetterOnTimeBenchmark , ParamNetReducedMnistOnTimeBenchmark , ParamNetReducedOptdigitsOnTimeBenchmark , ParamNetReducedPokerOnTimeBenchmark ] |
paper |
family | container version | name in the paper | benchmarks | Reference |
---|---|---|---|---|
ml.tabular_benchmark | - | LogReg |
TabularBenchmark for model = 'lr'
|
- |
ml.tabular_benchmark | - | SVM |
TabularBenchmark for model = 'svm'
|
- |
ml.tabular_benchmark | - | XGBoost |
TabularBenchmark for model = 'xgb'
|
- |
ml.tabular_benchmark | - | RF |
TabularBenchmark for model = 'rf'
|
- |
ml.tabular_benchmark | - | MLP |
TabularBenchmark for model = 'nn'
|
- |
We host all code to recreate the experiments in this repo: https://github.com/automl/HPOBenchExperimentUtils
The best-known values for all benchmarks we used to plot regret can be found here: https://github.com/automl/HPOBenchExperimentUtils/blob/master/HPOBenchExperimentUtils/utils/plotting_utils.py