-
Notifications
You must be signed in to change notification settings - Fork 41
/
optim_hierarchy.py
69 lines (54 loc) · 2.81 KB
/
optim_hierarchy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import sys, os
import argparse
from src.utils import load_config
import subprocess
os.environ['MKL_THREADING_LAYER'] = 'GNU'
def main():
parser = argparse.ArgumentParser(description='MNIST toy experiment')
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--start_res', type=int, default=-1, help='Resolution to start with.')
parser.add_argument('--object_id', type=int, default=-1, help='Object index.')
args, unknown = parser.parse_known_args()
cfg = load_config(args.config, 'configs/default.yaml')
resolutions=[32, 64, 128, 256]
iterations=[1000, 1000, 1000, 200]
lrs=[2e-3, 2e-3*0.7, 2e-3*(0.7**2), 2e-3*(0.7**3)] # reduce lr
for idx,(res, iteration, lr) in enumerate(zip(resolutions, iterations, lrs)):
if res<args.start_res:
continue
if res>cfg['model']['grid_res']:
continue
psr_sigma= 2 if res<=128 else 3
if res > 128:
psr_sigma = 5 if 'thingi_noisy' in args.config else 3
if args.object_id != -1:
out_dir = os.path.join(cfg['train']['out_dir'], 'object_%02d'%args.object_id, 'res_%d'%res)
else:
out_dir = os.path.join(cfg['train']['out_dir'], 'res_%d'%res)
# sample from mesh when resampling is enabled, otherwise reuse the pointcloud
init_shape='mesh' if cfg['train']['resample_every']>0 else 'pointcloud'
if args.object_id != -1:
input_mesh='None' if idx==0 else os.path.join(cfg['train']['out_dir'],
'object_%02d'%args.object_id, 'res_%d' % (resolutions[idx-1]),
'vis', init_shape, '%04d.ply' % (iterations[idx-1]))
else:
input_mesh='None' if idx==0 else os.path.join(cfg['train']['out_dir'],
'res_%d' % (resolutions[idx-1]),
'vis', init_shape, '%04d.ply' % (iterations[idx-1]))
cmd = 'export MKL_SERVICE_FORCE_INTEL=1 && '
cmd += "python optim.py %s --model:grid_res %d --model:psr_sigma %d \
--train:input_mesh %s --train:total_epochs %d \
--train:out_dir %s --train:lr_pcl %f \
--data:object_id %d" % (
args.config,
res,
psr_sigma,
input_mesh,
iteration,
out_dir,
lr,
args.object_id)
print(cmd)
os.system(cmd)
if __name__=="__main__":
main()