You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Many tasks in computer vision can be cast as a "label changing" problem, where the goal is to make a semantic change to the appearance of an image or some subject in an image in order to alter the class membership. Although successful task-specific methods have been developed for some label changing applications, to date no general purpose method exists. Motivated by this we propose deep manifold traversal, a method that addresses the problem in its most general form: it first approximates the manifold of natural images then morphs a test image along a traversal path away from a source class and towards a target class while staying near the manifold throughout. The resulting algorithm is surprisingly effective and versatile. It is completely data driven, requiring only an example set of images from the desired source and target domains. We demonstrate deep manifold traversal on highly diverse label changing tasks: changing an individual's appearance (age and hair color), changing the season of an outdoor image, and transforming a city skyline towards nighttime.
1 in that paper new r3 verson 'Deep Manifold Traversal' author say will open source in github,but now has not yet open .
http://arxiv.org/abs/1511.06421
Many tasks in computer vision can be cast as a "label changing" problem, where the goal is to make a semantic change to the appearance of an image or some subject in an image in order to alter the class membership. Although successful task-specific methods have been developed for some label changing applications, to date no general purpose method exists. Motivated by this we propose deep manifold traversal, a method that addresses the problem in its most general form: it first approximates the manifold of natural images then morphs a test image along a traversal path away from a source class and towards a target class while staying near the manifold throughout. The resulting algorithm is surprisingly effective and versatile. It is completely data driven, requiring only an example set of images from the desired source and target domains. We demonstrate deep manifold traversal on highly diverse label changing tasks: changing an individual's appearance (age and hair color), changing the season of an outdoor image, and transforming a city skyline towards nighttime.
1 in that paper new r3 verson 'Deep Manifold Traversal' author say will open source in github,but now has not yet open .
2 DGN can Arithmetic on faces https://github.com/Newmu/dcgan_code;
https://plus.google.com/+AndersBoesenLindboLarsen/posts/ffvSc3q82Dw demo video
The text was updated successfully, but these errors were encountered: