This code is licensed under CC BY-NC-SA 4.0. Commercial usage is not permitted; please contact [email protected] or [email protected] regarding commercial licensing. If you use this dataset or the code in a scientific publication, please cite the following paper:
@inproceedings{FischerECCV2018,
author = {Tobias Fischer and Hyung Jin Chang and Yiannis Demiris},
title = {{RT-GENE: Real-Time Eye Gaze Estimation in Natural Environments}},
booktitle = {European Conference on Computer Vision},
year = {2018},
month = {September},
pages = {339--357}
}
This work was supported in part by the Samsung Global Research Outreach program, and in part by the EU Horizon 2020 Project PAL (643783-RIA).
More information can be found on the Personal Robotic Lab's website: https://www.imperial.ac.uk/personal-robotics/software/.
- Install required Python packages:
- For
conda
users (recommended):conda install tensorflow-gpu numpy scipy tqdm pillow opencv matplotlib && conda install -c pytorch pytorch torchvision
- For
pip
users:pip install tensorflow-gpu numpy scipy tqdm torch torchvision Pillow opencv-python matplotlib
- For
- Download RT-GENE and add the source folder to your
PYTHONPATH
environment variable:cd $HOME/ && git clone https://github.com/Tobias-Fischer/rt_gene.git
export PYTHONPATH=$HOME/rt_gene/rt_gene/src
- Run
$HOME/rt_gene/rt_gene_standalone/estimate_gaze_standalone.py
. For supported arguments, run$HOME/rt_gene/rt_gene_standalone/estimate_gaze_standalone.py --help
- To use an ensemble scheme using 4 models trained on the MPII, UTMV and RT-GENE datasets, simply use the
--models
argument, e.gcd $HOME/rt_gene/ && ./rt_gene_standalone/estimate_gaze_standalone.py --models './rt_gene/model_nets/all_subjects_mpii_prl_utmv_0_02.h5' './rt_gene/model_nets/all_subjects_mpii_prl_utmv_1_02.h5' './rt_gene/model_nets/all_subjects_mpii_prl_utmv_2_02.h5' './rt_gene/model_nets/all_subjects_mpii_prl_utmv_3_02.h5'
See main README.md