forked from Byronnar/tensorflow-serving-yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
freeze_graph.py
executable file
·38 lines (24 loc) · 1.21 KB
/
freeze_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#! /usr/bin/env python
# coding=utf-8
import tensorflow as tf
from core.yolov3 import YOLOV3
def model_freeze(pb_file, ckpt_file):
with tf.name_scope('input'):
input_data = tf.placeholder(dtype=tf.float32, name='input_data')
model = YOLOV3(input_data, trainable=False) # 加载yolov3网络
print(model.conv_sbbox, model.conv_mbbox, model.conv_lbbox)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
saver = tf.train.Saver()
saver.restore(sess, ckpt_file)
converted_graph_def = tf.graph_util.convert_variables_to_constants(sess,
input_graph_def = sess.graph.as_graph_def(),
output_node_names = output_node_names)
with tf.gfile.GFile(pb_file, "wb") as f:
f.write(converted_graph_def.SerializeToString())
if __name__ == "__main__":
pb_file = "./checkpoint/yolov3_coco_v3.pb"
ckpt_file = "./checkpoint/yolov3_coco_demo.ckpt"
output_node_names = ["input/input_data", "pred_sbbox/concat_2", "pred_mbbox/concat_2", "pred_lbbox/concat_2",
"pred_multi_scale/concat"]
model_freeze(pb_file, ckpt_file)
print( 'YOLOV3 模型固化已完成.' )