设计和构建一个“最近最少使用”缓存,该缓存会删除最近最少使用的项目。缓存应该从键映射到值(允许你插入和检索特定键对应的值),并在初始化时指定最大容量。当缓存被填满时,它应该删除最近最少使用的项目。
它应该支持以下操作: 获取数据 get
和 写入数据 put
。
获取数据 get(key)
- 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value)
- 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ ); cache.put(1, 1); cache.put(2, 2); cache.get(1); // 返回 1 cache.put(3, 3); // 该操作会使得密钥 2 作废 cache.get(2); // 返回 -1 (未找到) cache.put(4, 4); // 该操作会使得密钥 1 作废 cache.get(1); // 返回 -1 (未找到) cache.get(3); // 返回 3 cache.get(4); // 返回 4
class Node:
def __init__(self, key=0, value=0):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cache = {}
self.head = Node()
self.tail = Node()
self.capacity = capacity
self.size = 0
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if key not in self.cache:
return -1
node = self.cache[key]
self.move_to_head(node)
return node.value
def put(self, key: int, value: int) -> None:
if key in self.cache:
node = self.cache[key]
node.value = value
self.move_to_head(node)
else:
node = Node(key, value)
self.cache[key] = node
self.add_to_head(node)
self.size += 1
if self.size > self.capacity:
node = self.remove_tail()
self.cache.pop(node.key)
self.size -= 1
def move_to_head(self, node):
self.remove_node(node)
self.add_to_head(node)
def remove_node(self, node):
node.prev.next = node.next
node.next.prev = node.prev
def add_to_head(self, node):
node.next = self.head.next
self.head.next.prev = node
self.head.next = node
node.prev = self.head
def remove_tail(self):
node = self.tail.prev
self.remove_node(node)
return node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
class LRUCache {
class Node {
int key;
int value;
Node prev;
Node next;
Node() {
}
Node(int key, int value) {
this.key = key;
this.value = value;
}
}
private Map<Integer, Node> cache;
private Node head;
private Node tail;
private int capacity;
private int size;
public LRUCache(int capacity) {
cache = new HashMap<>();
this.capacity = capacity;
head = new Node();
tail = new Node();
head.next = tail;
tail.prev = head;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
Node node = cache.get(key);
moveToHead(node);
return node.value;
}
public void put(int key, int value) {
if (cache.containsKey(key)) {
Node node = cache.get(key);
node.value = value;
moveToHead(node);
} else {
Node node = new Node(key, value);
cache.put(key, node);
addToHead(node);
++size;
if (size > capacity) {
node = removeTail();
cache.remove(node.key);
--size;
}
}
}
private void moveToHead(Node node) {
removeNode(node);
addToHead(node);
}
private void removeNode(Node node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
private void addToHead(Node node) {
node.next = head.next;
head.next.prev = node;
head.next = node;
node.prev = head;
}
private Node removeTail() {
Node node = tail.prev;
removeNode(node);
return node;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/