Skip to content

Latest commit

 

History

History
122 lines (108 loc) · 3.72 KB

README.md

File metadata and controls

122 lines (108 loc) · 3.72 KB

download


How to setup confluent Kafka.

  1. Account Setup
  2. Cluster Setup
  3. Kafka Topic
  4. Obtain secrets

Create a conda environment

conda create -p venv python==3.7 -y

Activate conda environment

conda activate venv

To use confluent kafka we need following details from Confluent dashboard.

confluentClusterName = ""
confluentBootstrapServers = ""
confluentTopicName = ""
confluentApiKey = ""
confluentSecret = ""

Add below library in requirements.txt

confluent-kafka[avro,json,protobuf]
pyspark==3.2.1

Read data from kafka topic

Import necessary packages

from pyspark.sql import SparkSession

Create a spark session object using below snippet.

spark_session=SparkSession.builder.master("local[*]").appName("Confluent").getOrCreate()

Read data from kafka topic

df = (spark_session
          .readStream
          .format("kafka")
          .option("kafka.bootstrap.servers", confluentBootstrapServers)
          .option("kafka.security.protocol", "SASL_SSL")
          .option("kafka.sasl.jaas.config",
                  "org.apache.kafka.common.security.plain.PlainLoginModule  required username='{}' password='{}';".format(confluentApiKey, confluentSecret))
          .option("kafka.ssl.endpoint.identification.algorithm", "https")
          .option("kafka.sasl.mechanism", "PLAIN")
          .option("subscribe", confluentTopicName)
          .option("startingOffsets", "earliest")
          .option("failOnDataLoss", "false")
          .load()
          )

process read data from kafka topic

df = (df.withColumn('key_str',df['key'].cast('string').alias('key_str')).drop('key').withColumn('value_str',df['value'].cast('string').alias('key_str')))

Write data in json file.

    query = (df.selectExpr("value_str").writeStream
             .format("json")
             .option("format", "append")
             .trigger(processingTime="5 seconds")
             .option("checkpointLocation", os.path.join("csv_checkpoint"))
             .option("path", os.path.join("json"))
             .outputMode("append")
             .start()
             )
    query.awaitTermination()

Write data in csv file

    query = (df.writeStream
             .format("csv")
             .option("format", "append")
             .trigger(processingTime="5 seconds")
             .option("checkpointLocation", os.path.join("csv_checkpoint"))
             .option("path", os.path.join("csv"))
             .outputMode("append")
             .start()
             )
    query.awaitTermination()

Write data to kafka topic

    query = (df.writeStream
             .format("kafka")
             .option("kafka.bootstrap.servers", confluentBootstrapServers)
             .option("kafka.security.protocol", "SASL_SSL")
             .option("kafka.sasl.jaas.config",
                     "org.apache.kafka.common.security.plain.PlainLoginModule  required username='{}' password='{}';".format(
                         confluentApiKey, confluentSecret))
             .option("kafka.ssl.endpoint.identification.algorithm", "https")
             .option("kafka.sasl.mechanism", "PLAIN")
             .option("checkpointLocation", os.path.join("kafka_checkpoint"))
             .option("topic", confluentTopicName).start())


    query.awaitTermination()

Note: Don't run your python script using python command use below command to run your script for kafka confluent.


To run python script

spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.1 <scipt_name.py>