Skip to content

Latest commit

 

History

History
211 lines (182 loc) · 5.53 KB

README.md

File metadata and controls

211 lines (182 loc) · 5.53 KB

English Version

题目描述

给定一个正整数和负整数组成的 N × M 矩阵,编写代码找出元素总和最大的子矩阵。

返回一个数组 [r1, c1, r2, c2],其中 r1, c1 分别代表子矩阵左上角的行号和列号,r2, c2 分别代表右下角的行号和列号。若有多个满足条件的子矩阵,返回任意一个均可。

注意:本题相对书上原题稍作改动

示例:

输入:
[
   [-1,0],
   [0,-1]
]
输出: [0,1,0,1]
解释: 输入中标粗的元素即为输出所表示的矩阵

说明:

  • 1 <= matrix.length, matrix[0].length <= 200

解法

双指针 i1, i2 遍历所有可能的“行对”,即子矩阵的上下两条边,这决定了矩阵的高,然后枚举 i1~i2 高度的每一列,看成一维数组的一项,求和最大的子数组即可。

Python3

class Solution:
    def getMaxMatrix(self, matrix: List[List[int]]) -> List[int]:
        m, n = len(matrix), len(matrix[0])
        s = [[0] * n for _ in range(m + 1)]
        for i in range(m):
            for j in range(n):
                # 构造列前缀和
                s[i + 1][j] = s[i][j] + matrix[i][j]

        mx = matrix[0][0]
        ans = [0, 0, 0, 0]
        for i1 in range(m):
            for i2 in range(i1, m):
                nums = [0] * n
                for j in range(n):
                    nums[j] = s[i2 + 1][j] - s[i1][j]

                start = 0
                f = nums[0]
                for j in range(1, n):
                    if f > 0:
                        f += nums[j]
                    else:
                        f = nums[j]
                        start = j
                    if f > mx:
                        mx = f
                        ans = [i1, start, i2, j]
        return ans

Java

class Solution {
    public int[] getMaxMatrix(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        int[][] s = new int[m + 1][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                s[i + 1][j] = s[i][j] + matrix[i][j];
            }
        }
        int mx = matrix[0][0];
        int[] ans = new int[]{0, 0, 0, 0};
        for (int i1 = 0; i1 < m; ++i1) {
            for (int i2 = i1; i2 < m; ++i2) {
                int[] nums = new int[n];
                for (int j = 0; j < n; ++j) {
                    nums[j] = s[i2 + 1][j] - s[i1][j];
                }
                int start = 0;
                int f = nums[0];
                for (int j = 1; j < n; ++j) {
                    if (f > 0) {
                        f += nums[j];
                    } else {
                        f = nums[j];
                        start = j;
                    }
                    if (f > mx) {
                        mx = f;
                        ans = new int[]{i1, start, i2, j};
                    }
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> getMaxMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> s(m + 1, vector<int>(n));
        for (int i = 0; i < m; ++i)
            for (int j = 0; j < n; ++j)
                s[i + 1][j] = s[i][j] + matrix[i][j];
        int mx = matrix[0][0];
        vector<int> ans(4);
        for (int i1 = 0; i1 < m; ++i1)
        {
            for (int i2 = i1; i2 < m; ++i2)
            {
                vector<int> nums;
                for (int j = 0; j < n; ++j)
                    nums.push_back(s[i2 + 1][j] - s[i1][j]);
                int start = 0;
                int f = nums[0];
                for (int j = 1; j < n; ++j)
                {
                    if (f > 0) f += nums[j];
                    else
                    {
                        f = nums[j];
                        start = j;
                    }
                    if (f > mx)
                    {
                        mx = f;
                        ans[0] = i1;
                        ans[1] = start;
                        ans[2] = i2;
                        ans[3] = j;
                    }
                }
            }
        }
        return ans;
    }
};

Go

func getMaxMatrix(matrix [][]int) []int {
	m, n := len(matrix), len(matrix[0])
	s := make([][]int, m+1)
	for i := range s {
		s[i] = make([]int, n)
	}
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			s[i+1][j] = s[i][j] + matrix[i][j]
		}
	}
	mx := matrix[0][0]
	ans := make([]int, 4)
	for i1 := 0; i1 < m; i1++ {
		for i2 := i1; i2 < m; i2++ {
			var nums []int
			for j := 0; j < n; j++ {
				nums = append(nums, s[i2+1][j]-s[i1][j])
			}
			start := 0
			f := nums[0]
			for j := 1; j < n; j++ {
				if f > 0 {
					f += nums[j]
				} else {
					f = nums[j]
					start = j
				}
				if f > mx {
					mx = f
					ans = []int{i1, start, i2, j}
				}
			}
		}
	}
	return ans
}

...