Skip to content

Latest commit

 

History

History
136 lines (108 loc) · 3.17 KB

README_EN.md

File metadata and controls

136 lines (108 loc) · 3.17 KB

中文文档

Description

Given a triangle array, return the minimum path sum from top to bottom.

For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

 

Example 1:

Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
Output: 11
Explanation: The triangle looks like:
   2
  3 4
 6 5 7
4 1 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).

Example 2:

Input: triangle = [[-10]]
Output: -10

 

Constraints:

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -104 <= triangle[i][j] <= 104

 

Follow up: Could you do this using only O(n) extra space, where n is the total number of rows in the triangle?

Solutions

Dynamic programming.

Python3

class Solution:
    def minimumTotal(self, triangle: List[List[int]]) -> int:
        n = len(triangle)
        dp = [[0] * (n + 1) for _ in range(n + 1)]
        for i in range(n - 1, -1, -1):
            for j in range(i + 1):
                dp[i][j] = min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle[i][j]
        return dp[0][0]
class Solution:
    def minimumTotal(self, triangle: List[List[int]]) -> int:
        n = len(triangle)
        dp = [0] * (n + 1)
        for i in range(n - 1, -1, -1):
            for j in range(i + 1):
                dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j]
        return dp[0]

Java

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        int[] dp = new int[n + 1];
        for (int i = n - 1; i >= 0; --i) {
            for (int j = 0; j <= i; ++j) {
                dp[j] = Math.min(dp[j], dp[j + 1]) + triangle.get(i).get(j);
            }
        }
        return dp[0];
    }
}

C++

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        int n = triangle.size();
        vector<int> dp(n + 1);
        for (int i = n - 1; i >= 0; --i)
            for (int j = 0; j <= i; ++j)
                dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j];
        return dp[0];
    }
};

Go

func minimumTotal(triangle [][]int) int {
	n := len(triangle)
	dp := make([]int, n+1)
	for i := n - 1; i >= 0; i-- {
		for j := 0; j <= i; j++ {
			dp[j] = min(dp[j], dp[j+1]) + triangle[i][j]
		}
	}
	return dp[0]
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...