Given an integer array nums
, return an array answer
such that answer[i]
is equal to the product of all the elements of nums
except nums[i]
.
The product of any prefix or suffix of nums
is guaranteed to fit in a 32-bit integer.
Example 1:
Input: nums = [1,2,3,4] Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3] Output: [0,0,9,0,0]
Constraints:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
- The product of any prefix or suffix of
nums
is guaranteed to fit in a 32-bit integer.
Follow up:
- Could you solve it in
O(n)
time complexity and without using division? - Could you solve it with
O(1)
constant space complexity? (The output array does not count as extra space for space complexity analysis.)
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
n = len(nums)
output = [1 for _ in nums]
left = right = 1
for i in range(n):
output[i] = left
left *= nums[i]
for i in range(n - 1, -1, -1):
output[i] *= right
right *= nums[i]
return output
class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] output = new int[n];
for (int i = 0, left = 1; i < n; ++i) {
output[i] = left;
left *= nums[i];
}
for (int i = n - 1, right = 1; i >= 0; --i) {
output[i] *= right;
right *= nums[i];
}
return output;
}
}
/**
* @param {number[]} nums
* @return {number[]}
*/
var productExceptSelf = function (nums) {
const n = nums.length;
let output = new Array(n);
for (let i = 0, left = 1; i < n; ++i) {
output[i] = left;
left *= nums[i];
}
for (let i = n - 1, right = 1; i >= 0; --i) {
output[i] *= right;
right *= nums[i];
}
return output;
};
func productExceptSelf(nums []int) []int {
n := len(nums)
l := make([]int, n)
l[0] = 1
for i := 1; i < n; i++ {
l[i] = l[i-1] * nums[i-1]
}
r := make([]int, n)
r[n-1] = 1
for i := n - 2; i >= 0; i-- {
r[i] = r[i+1] * nums[i+1]
}
ans := make([]int, n)
for i := 0; i < n; i++ {
ans[i] = l[i] * r[i]
}
return ans
}