-
Notifications
You must be signed in to change notification settings - Fork 5
/
dataset.py
617 lines (496 loc) · 19.9 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# import python innate functions
import random
import pickle
from ast import literal_eval
from collections import defaultdict
# import dataset wrangler
import numpy as np
import pandas as pd
# import machine learning modules
from sklearn.model_selection import StratifiedKFold
# import torch and its applications
import torch
from torch.utils.data import DataLoader, Dataset, Subset
# import from huggingface transformers
from transformers import AutoTokenizer, AutoModelForMaskedLM
# import third party modules
import yaml
DATA_CFG = {}
IB_CFG = {}
RBERT_CFG = {}
CONCAT_CFG = {}
# Read config.yaml file
with open("config.yaml") as infile:
SAVED_CFG = yaml.load(infile, Loader=yaml.FullLoader)
DATA_CFG = SAVED_CFG["data"]
IB_CFG = SAVED_CFG["IB"]
RBERT_CFG = SAVED_CFG["RBERT"]
CONCAT_CFG = SAVED_CFG["Concat"]
###############################################################################
## dataset for Improved Baseline models
def preprocessing_dataset(dataset):
"""처음 불러온 csv 파일을 원하는 형태의 DataFrame으로 변경 시켜줍니다."""
subject_entity = []
object_entity = []
for i, j in zip(dataset["subject_entity"], dataset["object_entity"]):
sub_dict = literal_eval(i)
obj_dict = literal_eval(j)
sub_start = int(sub_dict["start_idx"])
sub_end = int(sub_dict["end_idx"])
sub_type = sub_dict["type"]
obj_start = int(obj_dict["start_idx"])
obj_end = int(obj_dict["end_idx"])
obj_type = obj_dict["type"]
subject_entity.append([sub_start, sub_end, sub_type])
object_entity.append([obj_start, obj_end, obj_type])
out_dataset = pd.DataFrame(
{
"id": dataset["id"],
"sentence": dataset["sentence"],
"subject_entity": subject_entity,
"object_entity": object_entity,
"label": dataset["label"],
}
)
return out_dataset
def load_data(dataset_dir):
"""csv 파일을 경로에 맡게 불러 옵니다."""
pd_dataset = pd.read_csv(dataset_dir)
dataset = preprocessing_dataset(pd_dataset)
return dataset
def tokenized_dataset(dataset, tokenizer):
"""
Inserting typed entity markers to each sentences
subject: @*type*subject word@ (e.g. 김현수 -> @*사람*김현수@)
object: #^type^object word# (e.g. #^지명^한국#)
<<An Improved Baseline for Sentence-level Relation Extraction>>
returns: input_ids, subject start & end positions, object start & end positions
"""
type_dict = {
"PER": "사람",
"LOC": "지명",
"ORG": "기관",
"DAT": "날짜",
"TIM": "시간",
"DUR": "기간",
"MNY": "통화",
"PNT": "비율",
"NOH": "수량",
"POH": "기타",
}
sentences = []
e01, e02, sent = (
dataset["subject_entity"],
dataset["object_entity"],
dataset["sentence"],
)
subject_start, subject_end, sub_type = e01
object_start, object_end, obj_type = e02
subj = sent[e01[0] : e01[1] + 1]
obj = sent[e02[0] : e02[1] + 1]
if subject_start < object_start:
sent_ = (
sent[:subject_start]
+ f"@*{type_dict[sub_type]}*"
+ subj
+ "@"
+ sent[subject_end + 1 : object_start]
+ f"&^{type_dict[obj_type]}^"
+ obj
+ "&"
+ sent[object_end + 1 :]
)
ss = 1 + len(tokenizer.tokenize(sent[:subject_start]))
se = ss + 4 + len(tokenizer.tokenize(subj))
es = 1 + se + len(tokenizer.tokenize(sent[subject_end + 1 : object_start]))
ee = es + 4 + len(tokenizer.tokenize(obj))
else:
sent_ = (
sent[:object_start]
+ f"&^{type_dict[obj_type]}^"
+ obj
+ "&"
+ sent[object_end + 1 : subject_start]
+ f"@*{type_dict[sub_type]}*"
+ subj
+ "@"
+ sent[subject_end + 1 :]
)
es = 1 + len(tokenizer.tokenize(sent[:object_start]))
ee = es + 4 + len(tokenizer.tokenize(obj))
ss = 1 + ee + len(tokenizer.tokenize(sent[object_end + 1 : subject_start]))
se = ss + 4 + len(tokenizer.tokenize(subj))
sentences.append(sent_)
max_length = 256
senttokens = tokenizer.tokenize(sent_)[: max_length - 2]
input_ids = tokenizer.convert_tokens_to_ids(senttokens)
input_ids = tokenizer.build_inputs_with_special_tokens(input_ids)
return input_ids, ss, se, es, ee
def collate_fn(batch):
"""
Retrieving the input_ids, input_mask, labels, subject and object start positions
for IB model
"""
max_len = 256
input_ids = [f["input_ids"] + [1] * (max_len - len(f["input_ids"])) for f in batch]
input_mask = [
[1.0] * len(f["input_ids"]) + [0.0] * (max_len - len(f["input_ids"]))
for f in batch
]
labels = [f["labels"] for f in batch]
ss = [f["ss"] for f in batch]
se = [f["se"] for f in batch]
es = [f["es"] for f in batch]
ee = [f["ee"] for f in batch]
input_ids = torch.tensor(input_ids, dtype=torch.long)
input_mask = torch.tensor(input_mask, dtype=torch.float)
labels = torch.tensor(labels, dtype=torch.long)
ss = torch.tensor(ss, dtype=torch.long)
se = torch.tensor(se, dtype=torch.long)
es = torch.tensor(es, dtype=torch.long)
ee = torch.tensor(ee, dtype=torch.long)
output = (input_ids, input_mask, labels, ss, se, es, ee)
return output
def label_to_num(label):
num_label = []
with open("data/dict_label_to_num.pkl", "rb") as f:
dict_label_to_num = pickle.load(f)
for v in label:
num_label.append(dict_label_to_num[v])
return num_label
def processor(tokenizer, dataset, train_mode):
"""
train_dataset = processor(tokenizer, train_df))
--> train_dataloader = Dataloader(train_dataset, batch_size = ...)
"""
features = []
labels = dataset["label"].values
if train_mode:
labels = label_to_num(dataset["label"].values)
for i in range(len(dataset)):
input_ids, new_ss, new_se, new_es, new_ee = tokenized_dataset(
dataset.iloc[i], tokenizer
)
label = labels[i]
feature = {
"input_ids": input_ids,
"labels": label,
"ss": new_ss,
"se": new_se,
"es": new_es,
"ee": new_ee,
}
features.append(feature)
return features
def split_df(df, kfold_n):
kfold = StratifiedKFold(n_splits=kfold_n)
X = df["sentence"].values
y = df["label"].values
datas = []
for i, (train_index, valid_index) in enumerate(kfold.split(X, y)):
train_df = df.iloc[train_index].copy().reset_index(drop=True)
valid_df = df.iloc[valid_index].copy().reset_index(drop=True)
datas.append((train_df, valid_df))
return datas
###############################################################################
class Data:
def __init__(self, sent, se, oe, label):
self.sentence = sent
self.subject_entity = eval(se)
self.object_entity = eval(oe)
self.label = label
def __repr__(self):
sword = self.subject_entity["word"]
oword = self.object_entity["word"]
return self.sentence.replace(sword, f"[SUB]{sword}[/SUB]").replace(
oword, f"[OBJ]{oword}[/OBJ]"
)
def add_entity_token(data):
sub_start_idx, sub_end_idx = (
data.subject_entity["start_idx"],
data.subject_entity["end_idx"],
)
obj_start_idx, obj_end_idx = (
data.object_entity["start_idx"],
data.object_entity["end_idx"],
)
sub_type = data.subject_entity["type"]
obj_type = data.object_entity["type"]
s = data.sentence
if sub_start_idx < obj_start_idx:
res = [
s[:sub_start_idx],
f"[SUB:{sub_type}]" + s[sub_start_idx : sub_end_idx + 1] + "[/SUB]",
s[sub_end_idx + 1 : obj_start_idx],
f"[OBJ:{obj_type}]" + s[obj_start_idx : obj_end_idx + 1] + "[/OBJ]",
s[obj_end_idx + 1 :],
]
else:
res = [
s[:obj_start_idx],
f"[OBJ:{obj_type}]" + s[obj_start_idx : obj_end_idx + 1] + "[/OBJ]",
s[obj_end_idx + 1 : sub_start_idx],
f"[SUB:{sub_type}]" + s[sub_start_idx : sub_end_idx + 1] + "[/SUB]",
s[sub_end_idx + 1 :],
]
return "".join(res)
def split_dataset(ratio, train_dir):
df = pd.read_csv(train_dir)
label2data = defaultdict(list)
for item in df.itertuples():
data = Data(item.sentence, item.subject_entity, item.object_entity, item.label)
label2data[item.label].append(data)
train_dataset = []
valid_dataset = []
for label, data_list in label2data.items():
random.shuffle(data_list)
for i, data in enumerate(data_list):
if i < len(data_list) * ratio:
valid_dataset.append(data)
else:
train_dataset.append(data)
random.shuffle(train_dataset)
random.shuffle(valid_dataset)
return train_dataset, valid_dataset
def generate_test_dataset(test_dir):
test_dataset = []
df = pd.read_csv(test_dir)
for item in df.itertuples():
data = Data(item.sentence, item.subject_entity, item.object_entity, item.label)
test_dataset.append(data)
return test_dataset
def tokenize_dataset(dataset, tokenizer, train=True, bi=False):
concat_entities = []
sentences = []
labels = []
entity_token_ids = []
for data in dataset:
sub_word_type = data.subject_entity["type"]
obj_word_type = data.object_entity["type"]
sub_entity_token_id = tokenizer.encode(f"[SUB:{sub_word_type}]")[1]
obj_entity_token_id = tokenizer.encode(f"[OBJ:{obj_word_type}]")[1]
token_added_sentence = add_entity_token(data)
sentences.append(token_added_sentence)
labels.append(data.label)
entity_token_ids.append((sub_entity_token_id, obj_entity_token_id))
tokenized_sentences = tokenizer(
sentences,
return_tensors="pt",
padding=True,
truncation=True,
max_length=256,
add_special_tokens=True,
)
sub_token_indexes = []
obj_token_indexes = []
for tokens, (sub_token_id, obj_token_id) in zip(
tokenized_sentences["input_ids"], entity_token_ids
):
# print(tokens,sub_token_id,obj_token_id)
try:
sub_token_index = (tokens == sub_token_id).nonzero()[0].item()
obj_token_index = (tokens == obj_token_id).nonzero()[0].item()
sub_token_indexes.append(sub_token_index)
obj_token_indexes.append(obj_token_index)
except:
print(
tokenizer.decode(tokens), tokenizer.decode([sub_token_id, obj_token_id])
)
continue
tokenized_sentences["sub_token_index"] = sub_token_indexes
tokenized_sentences["obj_token_index"] = obj_token_indexes
# tokenized_sentences['entity_token_ids'] = entity_token_ids
if train == False:
return tokenized_sentences
with open("dict_label_to_num.pkl", "rb") as f:
dict_label_to_num = pickle.load(f)
for i in range(len(labels)):
if bi:
labels[i] = 0 if labels[i] == "no_relation" else 1
else:
labels[i] = dict_label_to_num[labels[i]]
return tokenized_sentences, labels
def load_train_dataset(train_dir, tokenizer):
train_datalist, valid_datalist = split_dataset(ratio=0.2, train_dir=train_dir)
train_tokenized, train_labels = tokenize_dataset(train_datalist, tokenizer)
valid_tokenized, valid_labels = tokenize_dataset(valid_datalist, tokenizer)
train_dataset = EntityRelationDataset(train_tokenized, train_labels)
valid_dataset = EntityRelationDataset(valid_tokenized, valid_labels)
return train_dataset, valid_dataset
class EntityRelationDataset(torch.utils.data.Dataset):
def __init__(self, tokenized_sentences, labels):
self.tokenized_sentences = tokenized_sentences
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: data[idx] for key, data in self.tokenized_sentences.items()}
item["labels"] = torch.tensor(self.labels[idx])
return item
###############################################################################
class RBERT_Dataset(Dataset):
def __init__(self, dataset, tokenizer, is_training: bool = True):
# pandas.Dataframe dataset
self.dataset = dataset
self.sentence = self.dataset["sentence"]
self.subject_entity = self.dataset["subject_entity"]
self.object_entity = self.dataset["object_entity"]
if is_training:
# training mode
self.train_label = label_to_num(self.dataset["label"].values)
if not is_training:
# test mode for submission
self.train_label = self.dataset["label"].values
self.label = torch.tensor(self.train_label)
# tokenizer and etc
self.tokenizer = tokenizer
def __getitem__(self, idx):
sentence = self.sentence[idx]
subject_entity = self.subject_entity[idx]
object_entity = self.object_entity[idx]
label = self.label[idx]
# concat entity in the beginning
concat_entity = subject_entity + "[SEP]" + object_entity
# tokenize
encoded_dict = self.tokenizer(
concat_entity,
sentence,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=RBERT_CFG.max_token_length,
add_special_tokens=True,
return_token_type_ids=False, # for RoBERTa
)
# RoBERTa's provided masks (do not include token_type_ids for RoBERTa)
encoded_dict["input_ids"] = encoded_dict["input_ids"].squeeze(0)
encoded_dict["attention_mask"] = encoded_dict["attention_mask"].squeeze(0)
# add subject and object entity masks where masks notate where the entity is
subject_entity_mask, object_entity_mask = self.add_entity_mask(
encoded_dict, subject_entity, object_entity
)
encoded_dict["subject_mask"] = subject_entity_mask
encoded_dict["object_mask"] = object_entity_mask
# fill label
encoded_dict["label"] = label
return encoded_dict
def __len__(self):
return len(self.dataset)
def add_entity_mask(self, encoded_dict, subject_entity, object_entity):
"""add entity token to input_ids"""
# print("tokenized input ids: \n",encoded_dict['input_ids'])
# initialize entity masks
subject_entity_mask = np.zeros(RBERT_CFG.max_token_length, dtype=int)
object_entity_mask = np.zeros(RBERT_CFG.max_token_length, dtype=int)
# get token_id from encoding subject_entity and object_entity
subject_entity_token_ids = self.tokenizer.encode(
subject_entity, add_special_tokens=False
)
object_entity_token_ids = self.tokenizer.encode(
object_entity, add_special_tokens=False
)
# print("entity token's input ids: ",subject_entity_token_ids, object_entity_token_ids)
# get the length of subject_entity and object_entity
subject_entity_length = len(subject_entity_token_ids)
object_entity_length = len(object_entity_token_ids)
# find coordinates of subject_entity_token_ids inside the encoded_dict["input_ids"]
subject_coordinates = np.where(
encoded_dict["input_ids"] == subject_entity_token_ids[0]
)
subject_coordinates = list(
map(int, subject_coordinates[0])
) # change the subject_coordinates into int type
for subject_index in subject_coordinates:
subject_entity_mask[
subject_index : subject_index + subject_entity_length
] = 1
# find coordinates of object_entity_token_ids inside the encoded_dict["input_ids"]
object_coordinates = np.where(
encoded_dict["input_ids"] == object_entity_token_ids[0]
)
object_coordinates = list(
map(int, object_coordinates[0])
) # change the object_coordinates into int type
for object_index in object_coordinates:
object_entity_mask[object_index : object_index + object_entity_length] = 1
# print(subject_entity_mask)
# print(object_entity_mask)
return torch.Tensor(subject_entity_mask), torch.Tensor(object_entity_mask)
###############################################################################
## dataset for concat models
def pull_out_dictionary(df_input: pd.DataFrame):
"""pull out str `{}` values from the pandas dataframe and shape it as a new column"""
df = df_input.copy()
# assign subject_entity and object_entity column values type as dictionary
df["subject_entity"] = df["subject_entity"].apply(lambda x: eval(x))
df["object_entity"] = df["object_entity"].apply(lambda x: eval(x))
# parse item inside of subject_entity and object_entity's dictionary values as columns of dataframe
# word, start_idx, end_idx, type as new columns
df = df.assign(
# subject_entity
subject_word=lambda x: x["subject_entity"].apply(lambda x: x["word"]),
subject_start_idx=lambda x: x["subject_entity"].apply(lambda x: x["start_idx"]),
subject_end_idx=lambda x: x["subject_entity"].apply(lambda x: x["end_idx"]),
subject_type=lambda x: x["subject_entity"].apply(lambda x: x["type"]),
# object_entity
object_word=lambda x: x["object_entity"].apply(lambda x: x["word"]),
object_start_idx=lambda x: x["object_entity"].apply(lambda x: x["start_idx"]),
object_end_idx=lambda x: x["object_entity"].apply(lambda x: x["end_idx"]),
object_type=lambda x: x["object_entity"].apply(lambda x: x["type"]),
)
# drop subject_entity and object_entity column
df = df.drop(["subject_entity", "object_entity"], axis=1)
return df
class RE_Dataset(torch.utils.data.Dataset):
"""Dataset 구성을 위한 class."""
def __init__(self, pair_dataset, labels):
self.pair_dataset = pair_dataset
self.labels = labels
def __getitem__(self, idx):
item = {
key: val[idx].clone().detach() for key, val in self.pair_dataset.items()
}
item["labels"] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
def preprocessing_dataset_concat(dataset):
"""처음 불러온 csv 파일을 원하는 형태의 DataFrame으로 변경 시켜줍니다."""
dataset = pull_out_dictionary(dataset)
# rename columns subject_word as subject_entity, object_word as object_entity
dataset = dataset.rename(
columns={"subject_word": "subject_entity", "object_word": "object_entity"}
)
out_dataset = pd.DataFrame(
{
"id": dataset["id"],
"sentence": dataset["sentence"],
"subject_entity": dataset["subject_entity"],
"object_entity": dataset["object_entity"],
"label": dataset["label"],
}
)
return out_dataset
def load_data_concat(dataset_dir):
"""csv 파일을 경로에 맡게 불러 옵니다."""
pd_dataset = pd.read_csv(dataset_dir)
dataset = preprocessing_dataset_concat(pd_dataset)
return dataset
def tokenized_dataset_concat(dataset, tokenizer, max_token_length):
"""tokenizer에 따라 sentence를 tokenizing 합니다."""
concat_entity = []
for e01, e02 in zip(dataset["subject_entity"], dataset["object_entity"]):
temp = ""
temp = e01 + "[SEP]" + e02
concat_entity.append(temp)
tokenized_sentences = tokenizer(
concat_entity,
list(dataset["sentence"]),
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_token_length + 4,
add_special_tokens=True,
return_token_type_ids=False,
)
return tokenized_sentences