-
Notifications
You must be signed in to change notification settings - Fork 6
/
inference_roberta.py
119 lines (101 loc) · 3.99 KB
/
inference_roberta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from transformers import AutoModel,AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, Trainer, TrainingArguments, RobertaConfig, RobertaTokenizer, RobertaForSequenceClassification, BertTokenizer
from torch.utils.data import DataLoader
from load_data import *
import pandas as pd
import torch
import torch.nn.functional as F
import pickle as pickle
import numpy as np
import argparse
from tqdm import tqdm
import time
import os
from entity_marker import *
def inference(model, tokenized_sent, device):
"""
test dataset을 DataLoader로 만들어 준 후,
batch_size로 나눠 model이 예측 합니다.
"""
dataloader = DataLoader(tokenized_sent, batch_size=16, shuffle=False)
model.eval()
output_pred = []
output_prob = []
for i, data in enumerate(tqdm(dataloader)):
with torch.no_grad():
outputs = model(
input_ids=data['input_ids'].to(device),
attention_mask=data['attention_mask'].to(device)
# token_type_ids=data['token_type_ids'].to(device)
)
logits = outputs[0]
prob = F.softmax(logits, dim=-1).detach().cpu().numpy()
logits = logits.detach().cpu().numpy()
result = np.argmax(logits, axis=-1)
output_pred.append(result)
output_prob.append(prob)
return np.concatenate(output_pred).tolist(), np.concatenate(output_prob, axis=0).tolist()
def num_to_label(label):
"""
숫자로 되어 있던 class를 원본 문자열 라벨로 변환 합니다.
"""
origin_label = []
with open('dict_num_to_label.pkl', 'rb') as f:
dict_num_to_label = pickle.load(f)
for v in label:
origin_label.append(dict_num_to_label[v])
return origin_label
def load_test_dataset(dataset_dir, tokenizer):
"""
test dataset을 불러온 후,
tokenizing 합니다.
"""
test_dataset = load_data(dataset_dir)
test_label = list(map(int,test_dataset['label'].values))
marked_test_dataset = load_data_marker(dataset_dir)
concated_test_dataset=concat_entity_idx(test_dataset,marked_test_dataset)
tokenized_test = marker_tokenized_dataset(concated_test_dataset, tokenizer)
print(tokenized_test[0])
return test_dataset['id'], tokenized_test, test_label
def main(args):
"""
주어진 dataset csv 파일과 같은 형태일 경우 inference 가능한 코드입니다.
"""
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load tokenizer
Tokenizer_NAME = "klue/roberta-large"
tokenizer = AutoTokenizer.from_pretrained(Tokenizer_NAME)
## load my model
MODEL_NAME = args.model_dir # model dir.
# '''
# customizing
# '''
# # prediction_path = args.model_dir.split('best_model/')[1]
# local_time = time.strftime('%Y-%m-%d-%p%I-%M-%S', time.localtime(time.time()))
# '''
# end
# '''
model = AutoModelForSequenceClassification.from_pretrained(args.model_dir)
model.parameters
model.to(device)
## load test datset
test_dataset_dir = "../dataset/test/test_data.csv"
test_id, test_dataset, test_label = load_test_dataset(test_dataset_dir, tokenizer)
Re_test_dataset = RE_Dataset(test_dataset ,test_label)
## predict answer
pred_answer, output_prob = inference(model, Re_test_dataset, device) # model에서 class 추론
pred_answer = num_to_label(pred_answer) # 숫자로 된 class를 원래 문자열 라벨로 변환.
## make csv file with predicted answer
#########################################################
# 아래 directory와 columns의 형태는 지켜주시기 바랍니다.
output = pd.DataFrame({'id':test_id,'pred_label':pred_answer,'probs':output_prob,})
output.to_csv('./prediction/submission.csv', index=False) # 최종적으로 완성된 예측한 라벨 csv 파일 형태로 저장.
#### 필수!! ##############################################
print('---- Finish! ----')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model dir
parser.add_argument('--model_dir', type=str, default="./best_model")
args = parser.parse_args()
print(args)
# print(args.model_dir.split('best_model/')[1])
main(args)