-
Notifications
You must be signed in to change notification settings - Fork 6
/
new_model.py
96 lines (92 loc) · 3.86 KB
/
new_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn as nn
from torch.nn import *
from transformers import AutoModel
from transformers.modeling_outputs import SequenceClassifierOutput
class SimpleModel(nn.Module) :
def __init__(self,MODEL_NAME,config):
super().__init__()
self.config = config
self.klue_roberta=AutoModel.from_pretrained(MODEL_NAME,config=config, add_pooling_layer=False)
self.num_labels = config.num_labels
self.classifier = nn.Sequential(
nn.Linear(config.hidden_size , config.hidden_size),
nn.ReLU(),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(config.hidden_size , config.num_labels)
)
self.classifier.apply(self.weight_init)
# self.init_weights()
def weight_init(self,m):
# classnames = m.__class__.__name__
# if classnames.find('Linear') :
if isinstance(m,nn.Linear):
nn.init.xavier_uniform_(m.weight,gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(m.bias)
def forward( self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.klue_roberta( input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# print("output.shape : {0}".format(outputs.shape))
# print(outputs)
sequence_output = outputs[0]
print("sequence_output.shape : {0}".format(sequence_output.shape))
logits=self.classifier(sequence_output[:,0,:])
loss = None
print("logits : {0}".format(logits.shape))
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
print("self.num_labels: {0}".format(self.num_labels))
print("logits.viewshape: {0}".format(logits.view(-1, self.num_labels).shape ) )
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)