forked from Linaom1214/TensorRT-For-YOLO-Series
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.py
310 lines (278 loc) · 15 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import sys
import logging
import argparse
import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from image_batch import ImageBatcher
logging.basicConfig(level=logging.INFO)
logging.getLogger("EngineBuilder").setLevel(logging.INFO)
log = logging.getLogger("EngineBuilder")
class EngineCalibrator(trt.IInt8EntropyCalibrator2):
"""
Implements the INT8 Entropy Calibrator 2.
"""
def __init__(self, cache_file):
"""
:param cache_file: The location of the cache file.
"""
super().__init__()
self.cache_file = cache_file
self.image_batcher = None
self.batch_allocation = None
self.batch_generator = None
def set_image_batcher(self, image_batcher: ImageBatcher):
"""
Define the image batcher to use, if any. If using only the cache file, an image batcher doesn't need
to be defined.
:param image_batcher: The ImageBatcher object
"""
self.image_batcher = image_batcher
size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape))
self.batch_allocation = cuda.mem_alloc(size)
self.batch_generator = self.image_batcher.get_batch()
def get_batch_size(self):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Get the batch size to use for calibration.
:return: Batch size.
"""
if self.image_batcher:
return self.image_batcher.batch_size
return 1
def get_batch(self, names):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Get the next batch to use for calibration, as a list of device memory pointers.
:param names: The names of the inputs, if useful to define the order of inputs.
:return: A list of int-casted memory pointers.
"""
if not self.image_batcher:
return None
try:
batch, _, _ = next(self.batch_generator)
log.info("Calibrating image {} / {}".format(self.image_batcher.image_index, self.image_batcher.num_images))
cuda.memcpy_htod(self.batch_allocation, np.ascontiguousarray(batch))
return [int(self.batch_allocation)]
except StopIteration:
log.info("Finished calibration batches")
return None
def read_calibration_cache(self):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Read the calibration cache file stored on disk, if it exists.
:return: The contents of the cache file, if any.
"""
if os.path.exists(self.cache_file):
with open(self.cache_file, "rb") as f:
log.info("Using calibration cache file: {}".format(self.cache_file))
return f.read()
def write_calibration_cache(self, cache):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Store the calibration cache to a file on disk.
:param cache: The contents of the calibration cache to store.
"""
with open(self.cache_file, "wb") as f:
log.info("Writing calibration cache data to: {}".format(self.cache_file))
f.write(cache)
class EngineBuilder:
"""
Parses an ONNX graph and builds a TensorRT engine from it.
"""
def __init__(self, verbose=False, workspace=8):
"""
:param verbose: If enabled, a higher verbosity level will be set on the TensorRT logger.
:param workspace: Max memory workspace to allow, in Gb.
"""
self.trt_logger = trt.Logger(trt.Logger.INFO)
if verbose:
self.trt_logger.min_severity = trt.Logger.Severity.VERBOSE
trt.init_libnvinfer_plugins(self.trt_logger, namespace="")
self.builder = trt.Builder(self.trt_logger)
self.config = self.builder.create_builder_config()
self.config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace * (2 ** 30))
# self.config.max_workspace_size = workspace * (2 ** 30) # Deprecation
self.batch_size = None
self.network = None
self.parser = None
def create_network(self, onnx_path, end2end, conf_thres, iou_thres, max_det, **kwargs):
"""
Parse the ONNX graph and create the corresponding TensorRT network definition.
:param onnx_path: The path to the ONNX graph to load.
"""
v8 = kwargs['v8']
network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
self.network = self.builder.create_network(network_flags)
self.parser = trt.OnnxParser(self.network, self.trt_logger)
onnx_path = os.path.realpath(onnx_path)
with open(onnx_path, "rb") as f:
if not self.parser.parse(f.read()):
print("Failed to load ONNX file: {}".format(onnx_path))
for error in range(self.parser.num_errors):
print(self.parser.get_error(error))
sys.exit(1)
inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]
outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)]
print("Network Description")
for input in inputs:
self.batch_size = input.shape[0]
print("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype))
for output in outputs:
print("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype))
assert self.batch_size > 0
# self.builder.max_batch_size = self.batch_size # This no effect for networks created with explicit batch dimension mode. Also DEPRECATED.
if end2end:
previous_output = self.network.get_output(0)
self.network.unmark_output(previous_output)
if not v8:
# output [1, 8400, 85]
# slice boxes, obj_score, class_scores
strides = trt.Dims([1,1,1])
starts = trt.Dims([0,0,0])
bs, num_boxes, temp = previous_output.shape
shapes = trt.Dims([bs, num_boxes, 4])
# [0, 0, 0] [1, 8400, 4] [1, 1, 1]
boxes = self.network.add_slice(previous_output, starts, shapes, strides)
num_classes = temp -5
starts[2] = 4
shapes[2] = 1
# [0, 0, 4] [1, 8400, 1] [1, 1, 1]
obj_score = self.network.add_slice(previous_output, starts, shapes, strides)
starts[2] = 5
shapes[2] = num_classes
# [0, 0, 5] [1, 8400, 80] [1, 1, 1]
scores = self.network.add_slice(previous_output, starts, shapes, strides)
# scores = obj_score * class_scores => [bs, num_boxes, nc]
scores = self.network.add_elementwise(obj_score.get_output(0), scores.get_output(0), trt.ElementWiseOperation.PROD)
else:
strides = trt.Dims([1,1,1])
starts = trt.Dims([0,0,0])
previous_output = self.network.add_shuffle(previous_output)
previous_output.second_transpose = (0, 2, 1)
print(previous_output.get_output(0).shape)
bs, num_boxes, temp = previous_output.get_output(0).shape
shapes = trt.Dims([bs, num_boxes, 4])
# [0, 0, 0] [1, 8400, 4] [1, 1, 1]
boxes = self.network.add_slice(previous_output.get_output(0), starts, shapes, strides)
num_classes = temp -4
starts[2] = 4
shapes[2] = num_classes
# [0, 0, 4] [1, 8400, 80] [1, 1, 1]
scores = self.network.add_slice(previous_output.get_output(0), starts, shapes, strides)
'''
"plugin_version": "1",
"background_class": -1, # no background class
"max_output_boxes": detections_per_img,
"score_threshold": score_thresh,
"iou_threshold": nms_thresh,
"score_activation": False,
"box_coding": 1,
'''
registry = trt.get_plugin_registry()
assert(registry)
creator = registry.get_plugin_creator("EfficientNMS_TRT", "1")
assert(creator)
fc = []
fc.append(trt.PluginField("background_class", np.array([-1], dtype=np.int32), trt.PluginFieldType.INT32))
fc.append(trt.PluginField("max_output_boxes", np.array([max_det], dtype=np.int32), trt.PluginFieldType.INT32))
fc.append(trt.PluginField("score_threshold", np.array([conf_thres], dtype=np.float32), trt.PluginFieldType.FLOAT32))
fc.append(trt.PluginField("iou_threshold", np.array([iou_thres], dtype=np.float32), trt.PluginFieldType.FLOAT32))
fc.append(trt.PluginField("box_coding", np.array([1], dtype=np.int32), trt.PluginFieldType.INT32))
fc.append(trt.PluginField("score_activation", np.array([0], dtype=np.int32), trt.PluginFieldType.INT32))
fc = trt.PluginFieldCollection(fc)
nms_layer = creator.create_plugin("nms_layer", fc)
layer = self.network.add_plugin_v2([boxes.get_output(0), scores.get_output(0)], nms_layer)
layer.get_output(0).name = "num"
layer.get_output(1).name = "boxes"
layer.get_output(2).name = "scores"
layer.get_output(3).name = "classes"
for i in range(4):
self.network.mark_output(layer.get_output(i))
def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000,
calib_batch_size=8):
"""
Build the TensorRT engine and serialize it to disk.
:param engine_path: The path where to serialize the engine to.
:param precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'.
:param calib_input: The path to a directory holding the calibration images.
:param calib_cache: The path where to write the calibration cache to, or if it already exists, load it from.
:param calib_num_images: The maximum number of images to use for calibration.
:param calib_batch_size: The batch size to use for the calibration process.
"""
engine_path = os.path.realpath(engine_path)
engine_dir = os.path.dirname(engine_path)
os.makedirs(engine_dir, exist_ok=True)
print("Building {} Engine in {}".format(precision, engine_path))
inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]
# TODO: Strict type is only needed If the per-layer precision overrides are used
# If a better method is found to deal with that issue, this flag can be removed.
self.config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if precision == "fp16":
if not self.builder.platform_has_fast_fp16:
print("FP16 is not supported natively on this platform/device")
else:
self.config.set_flag(trt.BuilderFlag.FP16)
elif precision == "int8":
if not self.builder.platform_has_fast_int8:
print("INT8 is not supported natively on this platform/device")
else:
if self.builder.platform_has_fast_fp16:
# Also enable fp16, as some layers may be even more efficient in fp16 than int8
self.config.set_flag(trt.BuilderFlag.FP16)
self.config.set_flag(trt.BuilderFlag.INT8)
self.config.int8_calibrator = EngineCalibrator(calib_cache)
if not os.path.exists(calib_cache):
calib_shape = [calib_batch_size] + list(inputs[0].shape[1:])
calib_dtype = trt.nptype(inputs[0].dtype)
self.config.int8_calibrator.set_image_batcher(
ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images,
exact_batches=True))
# with self.builder.build_engine(self.network, self.config) as engine, open(engine_path, "wb") as f:
with self.builder.build_serialized_network(self.network, self.config) as engine, open(engine_path, "wb") as f:
print("Serializing engine to file: {:}".format(engine_path))
f.write(engine) # .serialize()
def main(args):
builder = EngineBuilder(args.verbose, args.workspace)
builder.create_network(args.onnx, args.end2end, args.conf_thres, args.iou_thres, args.max_det, v8=args.v8)
builder.create_engine(args.engine, args.precision, args.calib_input, args.calib_cache, args.calib_num_images,
args.calib_batch_size)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--onnx", help="The input ONNX model file to load")
parser.add_argument("-e", "--engine", help="The output path for the TRT engine")
parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"],
help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'")
parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output")
parser.add_argument("-w", "--workspace", default=1, type=int, help="The max memory workspace size to allow in Gb, "
"default: 1")
parser.add_argument("--calib_input", help="The directory holding images to use for calibration")
parser.add_argument("--calib_cache", default="./calibration.cache",
help="The file path for INT8 calibration cache to use, default: ./calibration.cache")
parser.add_argument("--calib_num_images", default=5000, type=int,
help="The maximum number of images to use for calibration, default: 5000")
parser.add_argument("--calib_batch_size", default=8, type=int,
help="The batch size for the calibration process, default: 8")
parser.add_argument("--end2end", default=False, action="store_true",
help="export the engine include nms plugin, default: False")
parser.add_argument("--conf_thres", default=0.4, type=float,
help="The conf threshold for the nms, default: 0.4")
parser.add_argument("--iou_thres", default=0.5, type=float,
help="The iou threshold for the nms, default: 0.5")
parser.add_argument("--max_det", default=100, type=int,
help="The total num for results, default: 100")
parser.add_argument("--v8", default=False, action="store_true",
help="use yolov8 model, default: False")
args = parser.parse_args()
print(args)
if not all([args.onnx, args.engine]):
parser.print_help()
log.error("These arguments are required: --onnx and --engine")
sys.exit(1)
if args.precision == "int8" and not (args.calib_input or os.path.exists(args.calib_cache)):
parser.print_help()
log.error("When building in int8 precision, --calib_input or an existing --calib_cache file is required")
sys.exit(1)
main(args)