-
Notifications
You must be signed in to change notification settings - Fork 4
/
CEvNS.py
756 lines (573 loc) · 23.6 KB
/
CEvNS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
"""
CEvNS.py - Release Version 1.0 - 05/05/2018
Summary:
Code for calculating differential cross section
for Coherent Elastic Neutrino Nucleus Scattering (CEvNS).
Cross sections mainly taken from arXiv:1604.01025.
See also arXiv:1701.07443.
Magnetic moment - arXiv:1508.07981
Requires numpy and scipy.
Author: Bradley J Kavanagh
Please report any problems to: [email protected]
"""
from __future__ import print_function
import numpy as np
from scipy.interpolate import interp1d, UnivariateSpline,InterpolatedUnivariateSpline
from scipy.integrate import quad
#----Notes-----
"""
We're assuming that the Z-mass is much larger
than the typical momentum transfer (which is fine
for solar and reactor neutrinos).
"""
#----Constants----
G_FERMI = 1.1664e-5 #Fermi Constant in GeV^-2
SIN2THETAW = 0.2387 #Sine-squared of the weak angle
ALPHA_EM = 0.007297353 #EM Fine structure constant
m_e = 0.5109989461e-3 #Electron mass in GeV
SQRT2 = np.sqrt(2.0)
flav = {'e': 0, 'eb': 1, 'mu': 2, 'mub': 3, 'tau': 4, 'taub': 5}
#----Module-scope variables----
neutrino_flux_tot = None
neutrino_flux_list = None
diffrate_A = None
diffrate_B = None
nu_source = None
Enu_min = 0
Enu_max = 0
#----Some functions----
#Helm Form Factor
def HelmFormFactor(E, A):
"""
Input:
- E (recoil energy in keV)
- A (dimensionless mass number of the nucleus)
Returns the Helm Form factor Fˆ2(E_R)
"""
#Define conversion factor from amu-->keV
amu = 931.5*1e3 #keV
#Convert recoil energy to momentum transfer q in keV
q1 = np.sqrt(2*A*amu*E) #sqrt(keV^2) = keV
#Convert q into fm^-1
q2 = q1*(1e-12/1.97e-7) # fm^-1
#Calculate nuclear parameters (see https://arxiv.org/abs/hep-ph/0608035)
s = 0.9 #fm
a = 0.52 #fm
c = 1.23*(A**(1.0/3.0)) - 0.60 #fm
R1 = np.sqrt(c*c + 7*np.pi*np.pi*a*a/3.0 - 5*s*s) #fm
#Calculate form factor
x = q2*R1 #dimensionless
J1 = np.sin(x)/(x*x) - np.cos(x)/x
F = 3*J1/x
return (F*F)*(np.exp(-(q2*q2*s*s)))
#Maximum nuclear recoil energy (in keV)
def ERmax(E_nu, A):
#Nuclear mass in MeV
m_A_MeV = A*0.9315e3
#return 1e3*2.0*E_nu**2/m_N_MeV
return 1e3*(2.0*E_nu*E_nu)/(m_A_MeV + 2*E_nu)
#----Main cross section calculation----
def xsec_CEvNS(E_R, E_nu, A, Z, gsq=0.0, m_med=1000.0):
"""
Calculates the differential cross section for
Coherent Elastic Neutrino-Nucleus Scattering
including a new Z' mediator.
Note: currently assuming couplings of Z'
to u and d quarks are equal.
Parameters
----------
E_R : float
Recoil energy (in keV)
E_nu : float
Neutrino energy (in MeV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
gsq : float, optional
Product of couplings of the new mediator to quark
vector current and LH-neutrino VECTOR current.
Set to zero by default.
m_med : float, optional
Mass of new vector mediator (in MeV). Set to 1000 MeV
by default.
Returns
-------
float
Differential scattering cross section
(in cm^2/keV)
"""
m_A = A*0.9315 #Mass of target nucleus (in GeV)
q = np.sqrt(2.0*E_R*m_A) #Recoil momentum (in MeV)
#Note: m_A in GeV, E_R in keV, E_nu in MeV
#Calculate SM contribution
Qv = (A-Z) - (1.0-4.0*SIN2THETAW)*Z #Coherence factor
xsec_SM = (G_FERMI*G_FERMI/(4.0*np.pi))*Qv*Qv*m_A* \
(1.0-(q*q)/(4.0*E_nu*E_nu))
#Calculate New-Physics correction from Z' coupling
#Assume universal coupling to quarks (u and d)
QvNP = 3.0*A*gsq
#Factor of 1e6 from (GeV/MeV)^2
G_V = 1 - 1e6*(SQRT2/G_FERMI)*(QvNP/Qv)*1.0/(q*q + m_med*m_med)
#Convert from (GeV^-3) to (cm^2/keV)
#and multiply by form factor and New Physics correction
return G_V*G_V*xsec_SM*1e-6*(1.97e-14)*(1.97e-14)*HelmFormFactor(E_R, A)
def xsec_magneticNS(E_R, E_nu, A, Z, mu_nu=0.0):
"""
Calculates the differential cross section for
Coherent Elastic Neutrino-Nucleus Scattering from
neutrino magnetic moment - nuclear charge coupling.
Note that in principle there could also
be a dipole-dipole coupling between the neutrino
and the magnetic dipole of odd-A nuclei.
Parameters
----------
E_R : float
Recoil energy (in keV)
E_nu : float
Neutrino energy (in MeV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
mu_nu : float, optional
Neutrino magnetic moment (in units of the bohr
magneton mu_B = e/2m_e).
Returns
-------
float
Differential scattering cross section
(in cm^2/keV)
"""
#Note: m_A in GeV, E_R in keV, E_nu in MeV
#in GeV^-3
xsec_mag = ((np.pi*ALPHA_EM**2*mu_nu**2)/m_e**2)* \
(1.0/(1e-6*E_R) - 1.0/(E_nu*1e-3) + (1e-6*E_R)/(1e-6*4.0*E_nu**2))
#Convert from (GeV^-3) to (cm^2/keV)
#and multiply by form factor and coherent charge enhancement
return 1e-6*(1.97e-14)**2*xsec_mag*(Z**2*HelmFormFactor(E_R, A))
def xsec_scalar(E_R, E_nu, A, Z, gsq=0.0, m_S=1000.0):
"""
Calculates contribution to the differential cross section for
Coherent Elastic Neutrino-Nucleus Scattering from
a new scalar mediator, S.
NB: we assume equal coupling to all quarks.
See arXiv:1701.07443 - Eq. (3.6).
See arXiv:1604.01025 - Tab. IV.
Parameters
----------
E_R : float
Recoil energy (in keV)
E_nu : float
Neutrino energy (in MeV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
gsq : float, optional
Product of couplings of the new mediator to quark
scalar current and neutrino scalar current.
For now, we assume that the coupling to all quarks
is equal.
Set to zero by default.
m_S : float, optional
Mass of new scalar mediator (in MeV). Set to 1000 MeV
by default.
Returns
-------
float
Differential scattering cross section
(in cm^2/keV)
"""
#Note: m_A in GeV, E_R in keV, E_nu in MeV
m_A = A*0.9315 #Mass of target nucleus (in GeV)
q = np.sqrt(2.0*E_R*m_A) #Recoil momentum (in MeV)
#Note: m_A in GeV, E_R in keV, E_nu in MeV
#Calculate total scalar charge of the nucleus
Q_S = gsq*(14.0*A + 1.1*Z)
xsec_scalar = (E_R/(4.0*np.pi))*m_A**2/(E_nu**2*(q**2 + m_S**2)**2)
# keV/MeV = 1e-3
# (MeV)^-1 = (1e-3 GeV)^-1 = 1e3 GeV^-1
# MeV^-2 keV GeV^-2 = GeV^-3
#Convert from (keV GeV^2 MeV^-6) to (cm^2/keV)
#and multiply by form factor and New Physics correction
return Q_S*Q_S*xsec_scalar*1e6*(1.97e-14)*(1.97e-14)*HelmFormFactor(E_R, A)
def xsec_NSI(E_R, E_nu, A, Z, Eps_u_e, Eps_d_e, Eps_u_mu=0, Eps_d_mu=0, Eps_u_tau=0, Eps_d_tau=0):
"""
Calculates the differential cross section for
Coherent Elastic Neutrino-Nucleus Scattering
including Non-standard Neutrino interactions (NSI)
Parameters
----------
E_R : float
Recoil energy (in keV)
E_nu : float
Neutrino energy (in MeV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
Eps_X_Y : float
NSI coupling epsilson to X type quarks (X = u, d).
Y = e, mu, tau specifies the final neutrino flavour.
For flavour-conserving (i.e. nu_e -> nu_e) Y = e.
For flavour-changing (e.g. nu_e -> nu_tau) Y = mu, tau.
Returns
-------
float
Differential scattering cross section
(in cm^2/keV)
"""
m_A = A*0.9315 #Mass of target nucleus (in GeV)
q = np.sqrt(2.0*E_R*m_A) #Recoil momentum (in MeV)
#Note: m_A in GeV, E_R in keV, E_nu in MeV
#Calculate NSI charge
Q_NSI_sq = 4*((A-Z)*(-0.5 + Eps_u_e + 2*Eps_d_e) + Z*(0.5 - 2.0*SIN2THETAW + 2*Eps_u_e + Eps_d_e))**2
Q_NSI_sq += 4*((A-Z)*(Eps_u_mu + 2*Eps_d_mu) + Z*(2*Eps_u_mu + Eps_d_mu))**2
Q_NSI_sq += 4*((A-Z)*(Eps_u_tau + 2*Eps_d_tau) + Z*(2*Eps_u_tau + Eps_d_tau))**2
xsec_NSI = (G_FERMI*G_FERMI/(4.0*np.pi))*Q_NSI_sq*m_A* \
(1.0-(q*q)/(4.0*E_nu*E_nu))
#Convert from (GeV^-3) to (cm^2/keV)
#and multiply by form factor and New Physics correction
return xsec_NSI*1e-6*(1.97e-14)*(1.97e-14)*HelmFormFactor(E_R, A)
#----Nuclear-scattering rate calculation----
#Load neutrino fluxes and save as interpolation function
#(neutrino_flux) in units of neutrinos/cm^2/s/MeV
#(with input E, in MeV)
def loadNeutrinoFlux(source="CHOOZ"):
global neutrino_flux_tot
global neutrino_flux_list
global Enu_min
global Enu_max
global nu_source
nu_source = source
#Initialise the list of neutrino fluxes to all return zero
#NB: the list corresponds to (e, e-bar, mu, mu-bar, tau, tau-bar)
neutrino_flux_list = [lambda x: 1e-30 for i in range(6)]
if (source == "CHOOZ"):
data = np.loadtxt("DataFiles/neutrino_spectrum.txt")
#Factor of 0.9 in normalisation comes from Reactor up-time
normalisation = np.loadtxt("DataFiles/ScaleConstants.txt")[0]
#Factors of 1e-3 to convert from keV to MeV
#Electron anti-neutrinos
neutrino_flux_list[flav['eb']] = InterpolatedUnivariateSpline(1e-3*data[:,0], 1e3*data[:,1]*normalisation, k = 1)
#bounds_error=False, fill_value=1e-20)
Enu_min = 1e-3*np.min(data[:,0])
Enu_max = 1e-3*np.max(data[:,0])
#print Enu_min, Enu_max
elif (source == "SNS"):
#0.08 decay-at-rest (DAR) neutrinos per proton
#5.7e20 protons per day (divided by 24*60*60 to get per second)
#Thanks to Xurun Huang for pointing out that 5.7e20 is a more accurate number
#COHERENT detector at a distance of 19.3m from neutrino production point
#so 4pi surface area is 4pi*19.3m^2
Nflux = 0.08*5.7e20/(24.0*60.0*60.0*4*np.pi*1930.0**2)
E_mub, data_mub = np.loadtxt("DataFiles/SNSflux_numub.txt", unpack=True)
rawflux_mub = InterpolatedUnivariateSpline(E_mub, data_mub, k = 1)
#Normalise the raw fluxes (DAR neutrinos only go up to the end point
# of the Michel spectrum, ~ 53.5 MeV)
DAR_norm = quad(rawflux_mub, np.min(E_mub), 54.0)[0]
flux_mub = InterpolatedUnivariateSpline(E_mub, data_mub*Nflux/DAR_norm, k = 1)
neutrino_flux_list[flav['mub']] = flux_mub
E_e, data_e = np.loadtxt("DataFiles/SNSflux_nue.txt", unpack=True)
flux_e = InterpolatedUnivariateSpline(E_e, data_e*Nflux/DAR_norm, k = 1)
neutrino_flux_list[flav['e']] = flux_e
E_mu, data_mu = np.loadtxt("DataFiles/SNSflux_numu.txt", unpack=True)
flux_mu = InterpolatedUnivariateSpline(E_mu, data_mu*Nflux/DAR_norm, k = 1)
neutrino_flux_list[flav['mu']] = flux_mu
Enu_min = 1.0
Enu_max = 300.0
else:
raise ValueError("CEvNS.py: source '" + source + "' not recognised...\nTry source == CHOOZ or source = SNS...")
#Now tabulate the total neutrino flux
Evals = np.logspace(np.log10(Enu_min), np.log10(Enu_max), 1000)
flux_tab = 0.0*Evals
for j in range(6):
flux_tab += neutrino_flux_list[j](Evals)
neutrino_flux_tot = InterpolatedUnivariateSpline(Evals,flux_tab, k = 1)
#Calculate recoil rate (in events/kg/keV/day)
def differentialRate_full(E_R, A, Z, gsq=0.0, m_med=1000.0, mu_nu=0.0, nu_flavor ="all"):
"""
Calculates the differential recoil rate for
Coherent Elastic Neutrino-Nucleus Scattering
from Chooz reactor neutrinos.
Includes contribution from both neutral current vector
exchange and neutrino magnetic moment interaction.
Checks to see whether the neutrino flux table
has been loaded (and loads it if not...)
Note: currently assuming couplings of Z'
to u and d quarks are equal.
Parameters
----------
E_R : float
Recoil energy (in keV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
gsq : float, optional
Product of couplings of the new mediator to quark
vector current and LH-neutrino VECTOR current.
Set to zero by default.
m_med : float, optional
Mass of new mediator (in MeV). Set to 1000 MeV
by default.
mu_nu : float, optional
Neutrino magnetic moment (in units of the bohr
magneton mu_B = e/2m_e).
Returns
-------
float
Differential recoil rate
(in /kg/keV/day)
"""
#This is not the most efficient thing, as some of the calculation
#is repeated is repeated is repeated in the two 'differentialRate'
#functions...but it's the easiest for now.
return differentialRate_CEvNS(E_R, A, Z, gsq, m_med, nu_flavor = nu_flavor) + \
differentialRate_magnetic(E_R, A, Z, mu_nu, nu_flavor = nu_flavor)
#Calculate recoil rate (in events/kg/keV/day)
def differentialRate_CEvNS(E_R, A, Z, gsq=0.0, m_med=1000.0, tab=False, nu_flavor="all"):
"""
Calculates the differential recoil rate for
Coherent Elastic Neutrino-Nucleus Scattering
from Chooz reactor neutrinos.
Checks to see whether the neutrino flux table
has been loaded (and loads it if not...)
Note: currently assuming couplings of Z'
to u and d quarks are equal.
Parameters
----------
E_R : float
Recoil energy (in keV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
gsq : float, optional
Product of couplings of the new mediator to quark
vector current and LH-neutrino VECTOR current.
Set to zero by default.
m_med : float, optional
Mass of new mediator (in MeV). Set to 1000 MeV
by default.
Returns
-------
float
Differential recoil rate
(in /kg/keV/day)
"""
#Use tabulated values if requested.
#Note: no bounds checking, or checking if tabulation is alread done!
if (tab):
A1 = diffrate_A(E_R)
B1 = diffrate_B(E_R)
return (A1 + B1*gsq)**2.0
#First, check that the neutrino flux has been loaded
if (neutrino_flux_tot == None):
print(" CEvNS.py: Loading neutrino flux for the first time...")
loadNeutrinoFlux()
if (nu_flavor == "all"):
integrand = lambda E_nu: xsec_CEvNS(E_R, E_nu, A, Z, gsq, m_med)\
*neutrino_flux_tot(E_nu)
else:
integrand = lambda E_nu: xsec_CEvNS(E_R, E_nu, A, Z, gsq, m_med)\
*neutrino_flux_list[flav[nu_flavor]](E_nu)
#Minimum neutrino energy required (in MeV)
E_min = np.sqrt(A*0.9315*E_R/2)
E_min = np.maximum(E_min, Enu_min)
#For reactor neutrinos, set E_max:
E_max = Enu_max
if (E_min > E_max):
return 0
m_N = A*1.66054e-27 #Nucleus mass in kg
rate = quad(integrand, E_min, E_max, epsrel=1e-4)[0]/m_N
if (nu_source == "SNS" and (nu_flavor == "all" or nu_flavor == "mu")):
if (E_min < 29.65): #Add in delta function neutrino flux from muon decay
#Check the loadNeutrinoFlux() for a descripion of this normalisation
Nflux = 0.08*5.7e20/(24.0*60.0*60.0*4*np.pi*1930.0**2)
rate += Nflux*xsec_CEvNS(E_R, 29.65, A, Z, gsq, m_med)/m_N
return 86400.0*rate #Convert from (per second) to (per day)
#Calculate recoil rate (in events/kg/keV/day)
def differentialRate_NSI(E_R, A, Z, Eps_u_e, Eps_d_e, Eps_u_mu=0, Eps_d_mu=0, Eps_u_tau=0, Eps_d_tau=0, nu_flavor="all"):
"""
Calculates the differential recoil rate for
Coherent Elastic Neutrino-Nucleus Scattering
from Chooz reactor neutrinos (including
Non-standard Neutrino interactions (NSI)).
Checks to see whether the neutrino flux table
has been loaded (and loads it if not...)
Parameters
----------
E_R : float
Recoil energy (in keV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
Eps_X_Y : float
NSI coupling epsilson to X type quarks (X = u, d).
Y = e, mu, tau specifies the final neutrino flavour.
For flavour-conserving (i.e. nu_e -> nu_e) Y = e.
For flavour-changing (e.g. nu_e -> nu_tau) Y = mu, tau.
Returns
-------
float
Differential recoil rate
(in /kg/keV/day)
"""
#First, check that the neutrino flux has been loaded
if (neutrino_flux_tot == None):
print(" CEvNS.py: Loading neutrino flux for the first time...")
loadNeutrinoFlux()
if (nu_flavor == "all"):
integrand = lambda E_nu: xsec_NSI(E_R, E_nu, A, Z, Eps_u_e, Eps_d_e,\
Eps_u_mu, Eps_d_mu, Eps_u_tau, Eps_d_tau)\
*neutrino_flux_tot(E_nu)
else:
integrand = lambda E_nu: xsec_NSI(E_R, E_nu, A, Z, Eps_u_e, Eps_d_e,\
Eps_u_mu, Eps_d_mu, Eps_u_tau, Eps_d_tau)\
*neutrino_flux_list[flav[nu_flavor]](E_nu)
#Minimum neutrino energy required (in MeV)
E_min = np.sqrt(A*0.9315*E_R/2)
E_min = np.maximum(E_min, Enu_min)
#For reactor neutrinos, set E_max:
E_max = Enu_max
if (E_min > E_max):
return 0
m_N = A*1.66054e-27 #Nucleus mass in kg
rate = quad(integrand, E_min, E_max, epsrel=1e-4)[0]/m_N
if (nu_source == "SNS" and (nu_flavor == "all" or nu_flavor == "mu")):
if (E_min < 29.65): #Add in delta function neutrino flux from muon decay
#Check the loadNeutrinoFlux() for a descripion of this normalisation
Nflux = 0.08*5.7e20/(24.0*60.0*60.0*4*np.pi*1930.0**2)
rate += Nflux*xsec_NSI(E_R, 29.65, A, Z, Eps_u_e, Eps_d_e,\
Eps_u_mu, Eps_d_mu, Eps_u_tau, Eps_d_tau)/m_N
return 86400.0*rate #Convert from (per second) to (per day)
#Calculate recoil rate (in events/kg/keV/day)
def differentialRate_scalar(E_R, A, Z, gsq=0.0, m_S=1000.0, tab=False, nu_flavor="all"):
"""
Calculates the differential recoil rate for
Coherent Elastic Neutrino-Nucleus Scattering
from a new scalar mediator, S.
NB: we assume equal coupling to all quarks.
See arXiv:1701.07443 - Eq. (3.6).
See arXiv:1604.01025 - Tab. IV.
Checks to see whether the neutrino flux table
has been loaded (and loads it if not...)
Parameters
----------
E_R : float
Recoil energy (in keV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
gsq : float, optional
Product of couplings of the new mediator to quark
scalar current and neutrino scalar current.
For now, we assume that the coupling to all quarks
is equal.
Set to zero by default.
m_S : float, optional
Mass of new scalar mediator (in MeV). Set to 1000 MeV
by default.
Returns
-------
float
Differential scattering cross section
(in cm^2/keV)
"""
#First, check that the neutrino flux has been loaded
if (neutrino_flux_tot == None):
print(" CEvNS.py: Loading neutrino flux for the first time...")
loadNeutrinoFlux()
if (nu_flavor == "all"):
integrand = lambda E_nu: xsec_scalar(E_R, E_nu, A, Z, gsq, m_S)\
*neutrino_flux_tot(E_nu)
else:
integrand = lambda E_nu: xsec_scalar(E_R, E_nu, A, Z, gsq, m_S)\
*neutrino_flux_list[flav[nu_flavor]](E_nu)
#Minimum neutrino energy required (in MeV)
E_min = np.sqrt(A*0.9315*E_R/2)
E_min = np.maximum(E_min, Enu_min)
#For reactor neutrinos, set E_max:
E_max = Enu_max
if (E_min > E_max):
return 0
m_N = A*1.66054e-27 #Nucleus mass in kg
rate = quad(integrand, E_min, E_max, epsrel=1e-4)[0]/m_N
if (nu_source == "SNS" and (nu_flavor == "all" or nu_flavor == "mu")):
if (E_min < 29.65): #Add in delta function neutrino flux from muon decay
#Check the loadNeutrinoFlux() for a descripion of this normalisation
Nflux = 0.08*5.7e20/(24.0*60.0*60.0*4*np.pi*1930.0**2)
rate += Nflux*xsec_scalar(E_R, 29.65, A, Z, gsq, m_S)/m_N
return 86400.0*rate #Convert from (per second) to (per day)
#Calculate recoil rate (in events/kg/keV/day)
def differentialRate_magnetic(E_R, A, Z, mu_nu=0.0, nu_flavor="all"):
"""
Calculates the differential recoil rate for
Coherent Elastic Neutrino-Nucleus Scattering
from Chooz reactor neutrinos.
Checks to see whether the neutrino flux table
has been loaded (and loads it if not...)
Note: currently assuming couplings of Z'
to u and d quarks are equal.
Parameters
----------
E_R : float
Recoil energy (in keV)
A : int
Mass number of target nucleus
Z : int
Atomic number of target nucleus
mu_nu : float, optional
Neutrino magnetic moment (in units of the bohr
magneton mu_B = e/2m_e).
Returns
-------
float
Differential recoil rate
(in /kg/keV/day)
"""
#First, check that the neutrino flux has been loaded
if (neutrino_flux_tot == None):
loadNeutrinoFlux()
if (nu_flavor == "all"):
integrand = lambda E_nu: xsec_magneticNS(E_R, E_nu, A, Z, mu_nu)\
*neutrino_flux_tot(E_nu)
else:
integrand = lambda E_nu: xsec_magneticNS(E_R, E_nu, A, Z, mu_nu)\
*neutrino_flux_list[flav[nu_flavor]](E_nu)
#Minimum neutrino energy required (in MeV)
E_min = np.sqrt(A*0.9315*E_R/2)
E_min = np.maximum(E_min, Enu_min)
#For reactor neutrinos, set E_max:
E_max = Enu_max
if (E_min > E_max):
return 0
m_N = A*1.66054e-27 #Nucleus mass in kg
rate = quad(integrand, E_min, E_max)[0]/m_N
if (nu_source == "SNS" and (nu_flavor == "all" or nu_flavor == "mu")):
if (E_min < 29.65): #Add in delta function neutrino flux from muon decay
#Check the loadNeutrinoFlux() for a descripion of this normalisation
Nflux = 0.08*5.7e20/(24.0*60.0*60.0*4*np.pi*1930.0**2)
rate += Nflux*xsec_magneticNS(E_R, 29.65, A, Z, mu_nu)/m_N
return 86400*rate #Convert from (per second) to (per day)
#-----------------
def differentialRate_tabulate(E_min, E_max, A, Z, m_med=1000.0, nu_flavor='all'):
global diffrate_A, diffrate_B
print(" Tabulating dR/dE for m_med =", '%.2e' % m_med, "MeV...")
Evals = np.logspace(np.log10(E_min), np.log10(E_max),1000)
Rvals_A = 0.0*Evals
Rvals_B = 0.0*Evals
alpha = 1.0
for i, Ei in enumerate(Evals):
Rvals_A[i] = np.sqrt(differentialRate_CEvNS(Ei, A, Z, gsq=0.0, m_med=m_med,nu_flavor=nu_flavor))
Rvals_B[i] = (1.0/(4.0*alpha*Rvals_A[i]))*(\
differentialRate_CEvNS(Ei, A, Z, gsq=alpha, m_med=m_med,nu_flavor=nu_flavor) - \
differentialRate_CEvNS(Ei, A, Z, gsq=-alpha, m_med=m_med,nu_flavor=nu_flavor))
#Check signs!
#Rvals_B[i] = np.sqrt(differentialRate_CEvNS(Ei, A, Z, gsq=Rvals_A[i], m_med=m_med))*1.0/Rvals_A[i] - 1.0
diffrate_A = InterpolatedUnivariateSpline(Evals, Rvals_A, k = 1)
diffrate_B = InterpolatedUnivariateSpline(Evals, Rvals_B, k = 1)