forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cusolver_MgPotrf_example2.cu
362 lines (303 loc) · 14 KB
/
cusolver_MgPotrf_example2.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <cuda_runtime.h>
#include <cusolverMg.h>
#include "cusolverMg_utils.h"
#include "cusolver_utils.h"
/* compute |x|_inf */
template <typename T> static T vec_nrm_inf(int n, const T *x) {
T max_nrm = 0.0;
for (int row = 1; row <= n; row++) {
T xi = x[IDX1F(row)];
max_nrm = (max_nrm > fabs(xi)) ? max_nrm : fabs(xi);
}
return max_nrm;
}
/* A is 1D laplacian, return A(N:-1:1, :) */
template <typename T> static void gen_1d_laplacian(int N, T *A, int lda) {
for (int J = 1; J <= N; J++) {
A[IDX2F(J, J, lda)] = 2.0;
if ((J - 1) >= 1) {
A[IDX2F(J, J - 1, lda)] = -1.0;
}
if ((J + 1) <= N) {
A[IDX2F(J, J + 1, lda)] = -1.0;
}
}
}
/* Generate matrix B := A * X */
template <typename T>
static void gen_ref_B(int N, int NRHS, double *A, int lda, double *X, int ldx, double *B, int ldb) {
for (int J = 1; J <= NRHS; J++) {
for (int I = 1; I <= N; I++) {
for (int K = 1; K <= N; K++) {
T Aik = A[IDX2F(I, K, lda)];
T Xk = X[IDX2F(K, J, ldx)];
B[IDX2F(I, J, ldb)] += (Aik * Xk);
}
}
}
}
/* Apply inverse to RHS matrix */
template <typename T>
static void solve_system_with_invA(int N, int NRHS, T *A, int lda, T *B, int ldb, T *X, int ldx) {
/* Extend lower triangular A to full matrix */
for (int I = 1; I <= N; I++) {
for (int J = (I + 1); J <= N; J++) {
A[IDX2F(I, J, lda)] = A[IDX2F(J, I, lda)];
}
}
#ifdef SHOW_FORMAT
std::printf("Full INV (A) = matlab base-1\n");
print_matrix(N, N, A, lda);
#endif
/* Reset input matrix to 0 */
memset(X, 0, sizeof(T) * lda * NRHS);
/* Apply full inv(A) by matrix-matrix multiplication */
for (int J = 1; J <= NRHS; J++) {
for (int I = 1; I <= N; I++) {
for (int K = 1; K <= N; K++) {
T Aik = A[IDX2F(I, K, lda)];
T Bk = B[IDX2F(K, J, ldx)];
X[IDX2F(I, J, ldx)] += (Aik * Bk);
}
}
}
};
int main(int argc, char *argv[]) {
cusolverMgHandle_t cusolverH = NULL;
using data_type = double;
/* maximum number of GPUs */
const int MAX_NUM_DEVICES = 16;
int nbGpus = 0;
std::vector<int> deviceList(MAX_NUM_DEVICES);
const int NRHS = 2;
const int N = 8;
const int IA = 1;
const int JA = 1;
const int T_A = 256; /* tile size of A */
const int lda = N;
const int ldb = N;
int info = 0;
cudaLibMgMatrixDesc_t descrA;
cudaLibMgGrid_t gridA;
cusolverMgGridMapping_t mapping = CUDALIBMG_GRID_MAPPING_COL_MAJOR;
int64_t lwork_potrf = 0;
int64_t lwork_potri = 0;
int64_t lwork = 0; /* workspace: number of elements per device */
std::printf("Test 1D Laplacian of order %d\n", N);
std::printf("Step 1: Create Mg handle and select devices \n");
CUSOLVER_CHECK(cusolverMgCreate(&cusolverH));
CUDA_CHECK(cudaGetDeviceCount(&nbGpus));
nbGpus = (nbGpus < MAX_NUM_DEVICES) ? nbGpus : MAX_NUM_DEVICES;
std::printf("\tThere are %d GPUs \n", nbGpus);
for (int j = 0; j < nbGpus; j++) {
deviceList[j] = j;
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, j));
std::printf("\tDevice %d, %s, cc %d.%d \n", j, prop.name, prop.major, prop.minor);
}
CUSOLVER_CHECK(cusolverMgDeviceSelect(cusolverH, nbGpus, deviceList.data()));
std::printf("step 2: Enable peer access.\n");
enablePeerAccess(nbGpus, deviceList.data());
std::printf("Step 3: Allocate host memory A \n");
std::vector<data_type> A(lda * N, 0);
std::vector<data_type> B(ldb * NRHS, 0);
std::vector<data_type> Xref(ldb * NRHS, 0);
std::vector<data_type> Xans(ldb * NRHS, 0);
std::printf("Step 4: Prepare 1D Laplacian for A and Xref = ones(N,NRHS) \n");
gen_1d_laplacian<data_type>(N, &A[IDX2F(IA, JA, lda)], lda);
#ifdef SHOW_FORMAT
std::printf("A = matlab base-1\n");
print_matrix(N, N, A.data(), lda);
#endif
/* X = ones(N,1) */
for (int row = 1; row <= N; row++) {
for (int col = 1; col <= NRHS; col++) {
Xref[IDX2F(row, col, ldb)] = 1.0;
}
}
#ifdef SHOW_FORMAT
std::printf("X = matlab base-1\n");
print_matrix(N, NRHS, Xref.data(), lda, CUBLAS_OP_T);
#endif
/* Set B := A * X */
printf("Step 5: Create RHS for reference solution on host B = A*X \n");
gen_ref_B<data_type>(N, NRHS, A.data(), /* input */
lda, Xref.data(), /* input */
ldb, /* same leading dimension as B */
B.data(), /* output */
ldb);
#ifdef SHOW_FORMAT
std::printf("B = matlab base-1\n");
print_matrix(N, NRHS, B.data(), ldb, CUBLAS_OP_T);
#endif
std::printf("Step 6: Create matrix descriptors for A and D \n");
CUSOLVER_CHECK(cusolverMgCreateDeviceGrid(&gridA, 1, nbGpus, deviceList.data(), mapping));
/* (global) A is N-by-N */
CUSOLVER_CHECK(cusolverMgCreateMatrixDesc(&descrA, N, /* nubmer of rows of (global) A */
N, /* number of columns of (global) A */
N, /* number or rows in a tile */
T_A, /* number of columns in a tile */
traits<data_type>::cuda_data_type, gridA));
std::printf("Step 7: Allocate distributed matrices A and B \n");
std::vector<data_type *> array_d_A(nbGpus, nullptr);
std::vector<data_type *> array_d_B(nbGpus, nullptr);
/* A := 0 */
createMat<data_type>(nbGpus, deviceList.data(), N, /* number of columns of global A */
T_A, /* number of columns per column tile */
lda, /* leading dimension of local A */
array_d_A.data());
std::printf("Step 8: Prepare data on devices \n");
memcpyH2D<data_type>(nbGpus, deviceList.data(), N, N,
/* input */
A.data(), lda,
/* output */
N, /* number of columns of global A */
T_A, /* number of columns per column tile */
lda, /* leading dimension of local A */
array_d_A.data(), /* host pointer array of dimension nbGpus */
IA, JA);
std::printf("Step 9: Allocate workspace space \n");
CUSOLVER_CHECK(
cusolverMgPotrf_bufferSize(cusolverH, CUBLAS_FILL_MODE_LOWER, N,
reinterpret_cast<void **>(array_d_A.data()), IA, /* base-1 */
JA, /* base-1 */
descrA, traits<data_type>::cuda_data_type, &lwork_potrf));
CUSOLVER_CHECK(cusolverMgPotri_bufferSize(
cusolverH, CUBLAS_FILL_MODE_LOWER, N, reinterpret_cast<void **>(array_d_A.data()), IA, JA,
descrA, traits<data_type>::cuda_data_type, &lwork_potri));
lwork = std::max(lwork_potrf, lwork_potri);
std::printf("\tAllocate device workspace, lwork = %lld \n", static_cast<long long>(lwork));
std::vector<data_type *> array_d_work(nbGpus, nullptr);
/* array_d_work[j] points to device workspace of device j */
workspaceAlloc(nbGpus, deviceList.data(),
sizeof(data_type) * lwork, /* number of bytes per device */
reinterpret_cast<void **>(array_d_work.data()));
/* sync all devices */
CUDA_CHECK(cudaDeviceSynchronize());
std::printf("Step 10: Solve A*X = B by POTRF and POTRI \n");
CUSOLVER_CHECK(cusolverMgPotrf(
cusolverH, CUBLAS_FILL_MODE_LOWER, N, reinterpret_cast<void **>(array_d_A.data()), IA, JA,
descrA, traits<data_type>::cuda_data_type, reinterpret_cast<void **>(array_d_work.data()),
lwork, &info /* host */
));
/* sync all devices */
CUDA_CHECK(cudaDeviceSynchronize());
/* check if A is singular */
if (0 > info) {
std::printf("%d-th parameter is wrong \n", -info);
exit(1);
}
CUSOLVER_CHECK(cusolverMgPotri(
cusolverH, CUBLAS_FILL_MODE_LOWER, N, reinterpret_cast<void **>(array_d_A.data()), IA, JA,
descrA, traits<data_type>::cuda_data_type, reinterpret_cast<void **>(array_d_work.data()),
lwork, &info /* host */
));
/* sync all devices */
CUDA_CHECK(cudaDeviceSynchronize());
/* check if parameters are valid */
if (0 > info) {
printf("%d-th parameter is wrong \n", -info);
exit(1);
}
std::printf("Step 11: Gather INV(A) from devices to host\n");
memcpyD2H<data_type>(nbGpus, deviceList.data(), N, N,
/* input */
N, /* number of columns of global A */
T_A, /* number of columns per column tile */
ldb, /* leading dimension of local A */
array_d_A.data(), IA, JA,
/* output */
A.data(), /* N-by-N */
ldb);
#ifdef SHOW_FORMAT
/* A is N-by-N */
std::printf("Computed solution INV(A)\n");
print_matrix(N, N, A.data(), lda);
#endif
printf("step 12: solve linear system B := inv(A) * B \n");
solve_system_with_invA(N, NRHS, A.data(), lda, B.data(), ldb, Xans.data(), ldb);
#ifdef SHOW_FORMAT
/* X is N-by-1*/
std::printf("Computed solution Xans\n");
print_matrix(N, NRHS, Xans.data(), ldb);
#endif
std::printf("step 13: measure residual error |Xref - Xans| \n");
data_type max_err = 0.0;
for (int col = 1; col <= NRHS; col++) {
std::printf("errors for X[:,%d] \n", col);
for (int row = 1; row <= N; row++) {
data_type Xref_ij = Xref[IDX2F(row, col, ldb)];
data_type Xans_ij = Xans[IDX2F(row, col, ldb)];
data_type err = fabs(Xref_ij - Xans_ij);
max_err = (err > max_err) ? err : max_err;
}
data_type Xref_nrm_inf = vec_nrm_inf(N, &Xref[IDX2F(1, col, ldb)]);
data_type Xans_nrm_inf = vec_nrm_inf(N, &Xans[IDX2F(1, col, ldb)]);
data_type A_nrm_inf = 4.0;
data_type rel_err = max_err / (A_nrm_inf * Xans_nrm_inf + Xref_nrm_inf);
std::printf("\t|b - A*x|_inf = %E\n", max_err);
std::printf("\t|Xref|_inf = %E\n", Xref_nrm_inf);
std::printf("\t|Xans|_inf = %E\n", Xans_nrm_inf);
std::printf("\t|A|_inf = %E\n", A_nrm_inf);
/* relative error is around machine zero */
/* the user can use |b - A*x|/(N*|A|*|x|+|b|) as well */
std::printf("\t|b - A*x|/(|A|*|x|+|b|) = %E\n\n", rel_err);
}
std::printf("step 14: Free resources \n");
destroyMat(nbGpus, deviceList.data(), N, /* number of columns of global A */
T_A, /* number of columns per column tile */
reinterpret_cast<void **>(array_d_A.data()));
workspaceFree(nbGpus, deviceList.data(), reinterpret_cast<void **>(array_d_work.data()));
return EXIT_SUCCESS;
}