-
Notifications
You must be signed in to change notification settings - Fork 0
/
datasets.py
183 lines (147 loc) · 6.92 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# function from IDRS implementation
from torchvision import transforms, datasets
from typing import *
import torch
import os
from torch.utils.data import Dataset
from toy_datasets.data_lin_separable import ToyDatasetLinearSeparationTrain, ToyDatasetLinearSeparationTest
from toy_datasets.data_cone_shaped import ToyDatasetConeShapedTrain, ToyDatasetConeShapedTest
from toy_datasets.data_blobs import ToyDatasetBlobsTrain, ToyDatasetBlobsTest
# set this environment variable to the location of your imagenet directory if you want to read ImageNet data.
# make sure your val directory is preprocessed to look like the train directory, e.g. by running this script
# https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh
IMAGENET_LOC_ENV = "IMAGENET_DIR"
# list of all datasets
# DATASETS = ["imagenet", "cifar10", "unaugmented_cifar10", "mnist", "unaugmented_mnist", "toy_dataset_linear_sep"]
DATASETS = ["cifar10", "toy_dataset_linear_sep", "toy_dataset_blobs", "toy_dataset_cone_shaped"]
def get_dataset(dataset: str, split: str) -> Dataset:
"""Return the dataset as a PyTorch Dataset object"""
if not os.path.exists("./dataset_cache"):
os.makedirs("./dataset_cache", exist_ok=True)
if dataset == "imagenet":
return _imagenet(split)
elif dataset == "cifar10":
return _cifar10(split)
elif dataset == "unaugmented_cifar10":
return _unaugmented_cifar10(split)
elif dataset == "mnist":
return _mnist(split)
elif dataset == "unaugmented_mnist":
return _unaugmented_mnist(split)
elif dataset == "toy_dataset_linear_sep":
return _toy_dataset_linear_sep(split)
elif dataset == "toy_dataset_blobs":
return _toy_dataset_blobs(split)
elif dataset == "toy_dataset_cone_shaped":
return _toy_dataset_cone_shaped(split)
def get_num_classes(dataset: str):
"""Return the number of classes in the dataset. """
if dataset == "imagenet":
return 1000
elif "blob" in dataset:
return 4
elif "toy_dataset" in dataset:
return 2
else:
return 10
def get_normalize_layer(dataset: str, device) -> torch.nn.Module:
"""Return the dataset's normalization layer"""
if dataset == "imagenet":
return NormalizeLayer(_IMAGENET_MEAN, _IMAGENET_STDDEV, device)
elif dataset == "cifar10":
return NormalizeLayer(_CIFAR10_MEAN, _CIFAR10_STDDEV, device)
elif dataset == "unaugmented_cifar10":
return NormalizeLayer(_CIFAR10_MEAN, _CIFAR10_STDDEV, device)
elif dataset == "mnist":
return NormalizeLayer(_MNIST_MEAN, _MNIST_STDDEV, device)
elif dataset == "unaugmented_mnist":
return NormalizeLayer(_MNIST_MEAN, _MNIST_STDDEV, device)
_IMAGENET_MEAN = [0.485, 0.456, 0.406]
_IMAGENET_STDDEV = [0.229, 0.224, 0.225]
_CIFAR10_MEAN = [0.4914, 0.4822, 0.4465]
_CIFAR10_STDDEV = [0.2023, 0.1994, 0.2010]
_MNIST_MEAN = [0.1307]
_MNIST_STDDEV = [0.3081]
def _cifar10(split: str) -> Dataset:
if split == "train":
return datasets.CIFAR10("./dataset_cache", train=True, download=True, transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
]))
elif split == "test":
return datasets.CIFAR10("./dataset_cache", train=False, download=True, transform=transforms.ToTensor())
def _unaugmented_cifar10(split: str) -> Dataset:
if split == "train":
return datasets.CIFAR10("./dataset_cache", train=True, download=True, transform=transforms.ToTensor())
elif split == "test":
return datasets.CIFAR10("./dataset_cache", train=False, download=True, transform=transforms.ToTensor())
def _mnist(split: str) -> Dataset:
if split == "train": # TODO: Define the mnist_cache folders
return datasets.MNIST("./mnist_cache", train=True, download=True, transform=transforms.Compose([
transforms.RandomCrop(28, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
]))
elif split == "test":
return datasets.MNIST("./mnist_cache", train=False, download=True, transform=transforms.ToTensor())
def _unaugmented_mnist(split: str) -> Dataset:
if split == "train": # TODO: Define the mnist_cache folders
return datasets.MNIST("./mnist_cache", train=True, download=True, transform=transforms.ToTensor())
elif split == "test":
return datasets.MNIST("./mnist_cache", train=False, download=True, transform=transforms.ToTensor())
def _imagenet(split: str) -> Dataset:
if IMAGENET_LOC_ENV not in os.environ:
raise RuntimeError("environment variable for ImageNet directory not set")
dir = os.environ[IMAGENET_LOC_ENV]
if split == "train":
subdir = os.path.join(dir, "train")
transform = transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
elif split == "test":
subdir = os.path.join(dir, "val")
transform = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor()
])
return datasets.ImageFolder(subdir, transform)
def _toy_dataset_linear_sep(split: str) -> Dataset:
if split == "train":
return ToyDatasetLinearSeparationTrain(500, 1, -1)
elif split == "test":
return ToyDatasetLinearSeparationTest(100, 1, -1)
def _toy_dataset_blobs(split: str) -> Dataset:
if split == "train":
return ToyDatasetBlobsTrain(500)
elif split == "test":
return ToyDatasetBlobsTest(100)
def _toy_dataset_cone_shaped(split: str) -> Dataset:
if split == "train":
return ToyDatasetConeShapedTrain(500, 2, 5, 0.5)
elif split == "test":
return ToyDatasetConeShapedTest(100, 2, 5, 0.5)
class NormalizeLayer(torch.nn.Module):
"""Standardize the channels of a batch of images by subtracting the dataset mean
and dividing by the dataset standard deviation.
In order to certify radii in original coordinates rather than standardized coordinates, we
add the Gaussian noise _before_ standardizing, which is why we have standardization be the first
layer of the classifier rather than as a part of preprocessing as is typical.
"""
def __init__(self, means: List[float], sds: List[float], device):
"""
:param means: the channel means
:param sds: the channel standard deviations
:param device:
"""
super(NormalizeLayer, self).__init__()
self.means = torch.tensor(means).to(device)
self.sds = torch.tensor(sds).to(device)
def forward(self, input: torch.tensor):
(batch_size, num_channels, height, width) = input.shape
means = self.means.repeat((batch_size, height, width, 1)).permute(0, 3, 1, 2)
sds = self.sds.repeat((batch_size, height, width, 1)).permute(0, 3, 1, 2)
return (input - means) / sds