-
Notifications
You must be signed in to change notification settings - Fork 2
/
Tpu.py
489 lines (376 loc) · 17.8 KB
/
Tpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""
cBLUE (comprehensive Bathymetric Lidar Uncertainty Estimator)
Copyright (C) 2019
Oregon State University (OSU)
Center for Coastal and Ocean Mapping/Joint Hydrographic Center, University of New Hampshire (CCOM/JHC, UNH)
NOAA Remote Sensing Division (NOAA RSD)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Contact:
Christopher Parrish, PhD
School of Construction and Civil Engineering
101 Kearney Hall
Oregon State University
Corvallis, OR 97331
(541) 737-5688
Last Edited By:
Keana Kief (OSU)
May 17th, 2024
"""
import logging
from pathos import logger
import pathos.pools as pp
import json
import os
import laspy
import numpy as np
import pandas as pd
import progressbar
from tqdm import tqdm
from Subaerial import Subaerial
from Subaqueous import Subaqueous
from Las import Las
logger = logging.getLogger(__name__)
class Tpu:
"""
TODO: rework...becasue J & M moved to CBlueApp.py
This class coordinates the TPU workflow. Beginning when the user
hits *Compute TPU*, the general workflow is summarized below:
1. Form observation equation (SensorModel class)
2. Generate Jacobian (Jacobian class)
3. for each flight line within Las
* Merge the Las data and trajectory data (Merge class)
* Calculate subaerial thu and tvu (Subaerial class)
* Calculate subaqueous thu and tvu (Subaqueous class)
* Combine subaerial and subaqueous TPU
* Export TPU (either as Python "pickle' or as Las extra bytes)
"""
def __init__(self, gui_object, sensor_object):
#Store the gui_object information
self.gui_object = gui_object
#Store the sensor_obejct information
self.sensor_object = sensor_object
self.subaqu_lookup_params = None
self.metadata = {}
self.flight_line_stats = {}
def update_fl_stats(self, fl, num_fl_points, fl_tpu_data):
# calc flight line tpu summary stats
fl_tpu_count = fl_tpu_data.shape[0]
fl_tpu_min = fl_tpu_data[:, 0:6].min(axis=0).tolist()
fl_tpu_max = fl_tpu_data[:, 0:6].max(axis=0).tolist()
fl_tpu_mean = fl_tpu_data[:, 0:6].mean(axis=0).tolist()
fl_tpu_stddev = fl_tpu_data[:, 0:6].std(axis=0).tolist()
fl_stat_indx = {
"total_thu": 0,
"total_tvu": 1,
}
fl_stats_strs = []
for fl_stat, ind in fl_stat_indx.items():
fl_stats_vals = (
fl_stat,
fl_tpu_min[ind],
fl_tpu_max[ind],
fl_tpu_mean[ind],
fl_tpu_stddev[ind],
)
fl_stats_str = "{}: {:6.3f}{:6.3f}{:6.3f}{:6.3f}".format(*fl_stats_vals)
fl_stats_strs.append(fl_stats_str)
fl_header_str = f"{fl} ({fl_tpu_count}/{num_fl_points} points with TPU)"
self.flight_line_stats.update({fl_header_str: fl_stats_strs})
def calc_tpu(self, sbet_las_files):
"""
:param sbet_las_tile: generator yielding sbet data and las tile name for each las tile
:return:
"""
sbet, las_file, jacobian, merge = sbet_las_files
data_to_output = []
# CREATE LAS OBJECT TO ACCESS INFORMATION IN LAS FILE
las = Las(las_file)
if las.num_file_points: # i.e., if las had data points
logger.tpu(
"{} ({:,} points)".format(las.las_short_name, las.num_file_points)
)
logger.tpu("flight lines {}".format(las.unq_flight_lines))
unsorted_las_xyztcf, t_argsort, flight_lines = las.get_flight_line(self.sensor_object.type)
self.flight_line_stats = {} # reset flight line stats dict
for fl in las.unq_flight_lines:
logger.tpu("flight line {} \n{}\n".format(fl, "-" * 50))
# las_xyzt has the same order as points in las (i.e., unordered)
fl_idx = flight_lines == fl
fl_unsorted_las_xyztcf = unsorted_las_xyztcf[fl_idx]
fl_t_argsort = t_argsort[fl_idx]
fl_las_idx = t_argsort.argsort()[fl_idx]
num_fl_points = np.sum(fl_idx) # count Trues
logger.tpu(f"{las.las_short_name} fl {fl}: {num_fl_points} points")
# CREATE MERGED-DATA OBJECT
logger.tpu(
"({}) merging trajectory and las data...".format(las.las_short_name)
)
merged_data, stddev, unsort_idx, raw_class, masked_fan_angle = merge.merge(
las,
fl,
sbet.values,
fl_unsorted_las_xyztcf,
fl_t_argsort,
fl_las_idx,
self.sensor_object,
)
if merged_data is not False: # i.e., las and sbet is merged
logger.tpu(
"({}) calculating subaer thu/tvu...".format(las.las_short_name)
)
subaer_obj = Subaerial(jacobian, merged_data, stddev)
subaer_thu, subaer_tvu = subaer_obj.calc_subaerial_tpu()
depth = self.gui_object.water_surface_ellipsoid_height - merged_data[4]
logger.tpu(
"({}) calculating subaqueous thu/tvu...".format(
las.las_short_name
)
)
#Initalize the subaqueous object
subaqu_obj = Subaqueous(
self.gui_object,
depth,
self.sensor_object,
raw_class
)
if(self.sensor_object.type == "multi"):
#Multi beam sensor: Sending to multi_beam_fit_lut()
subaqu_thu, subaqu_tvu = subaqu_obj.multi_beam_fit_lut(masked_fan_angle)
else:
#Single beam Sensor: Sending to fit_lut()
subaqu_thu, subaqu_tvu = subaqu_obj.fit_lut()
vdatum_mcu = (
float(self.gui_object.mcu) / 100.0
) # file is in cm (1-sigma)
logger.tpu(
"({}) calculating total thu...".format(las.las_short_name)
)
# sum in quadrature - get 95% confidence level
total_thu = np.sqrt(subaer_thu**2 + subaqu_thu**2)
logger.tpu(
"({}) calculating total tvu...".format(las.las_short_name)
)
# sum in quadrature - get 95% confidence level
total_tvu = np.sqrt(
subaer_tvu**2 + subaqu_tvu**2 + vdatum_mcu**2
)
# convert to 95% conf, if requested
if self.gui_object.error_type == "95% confidence":
logging.tpu("TPU reported at 95% confidence...")
total_thu *= 1.7308
total_tvu *= 1.96
else:
logging.tpu("TPU reported at 1 sigma...")
fl_tpu_data = np.vstack((total_thu, total_tvu, unsort_idx)).T
data_to_output.append(fl_tpu_data)
self.update_fl_stats(fl, num_fl_points, fl_tpu_data)
else:
logger.warning(
"SBET and LAS not merged because max delta "
"time exceeded acceptable threshold of {} "
"sec(s).".format(merge.max_allowable_dt)
)
self.flight_line_stats.update(
{"{} (0/{} points with TPU)".format(fl, num_fl_points): None}
)
self.write_metadata(las) # TODO: include as VLR?
try:
self.output_tpu_to_las_extra_bytes(las, data_to_output)
except ValueError as e:
raise ValueError("Las files already contain thu and tvu")
else:
logger.warning("WARNING: {} has no data points".format(las.las_short_name))
def output_tpu_to_las_extra_bytes(self, las, data_to_output):
"""output the calculated tpu to a las file
This method creates a las file tht contains the contents of the
original las file and the calculated tpu values as VLR extra bytes.
The las file is generated using "The laspy way", as documented in
https://laspy.readthedocs.io/en/latest/tut_part_3.html.
The following references have additional information describing las
extra bytes:
LAS v1.4 specifications:
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf
The LAS 1.4 Specification (ASPRS PERS article)
https://www.asprs.org/wp-content/uploads/2010/12/LAS_Specification.pdf
ASPRS LAS Working Group Github repository
https://github.com/ASPRSorg/LAS
The following table lists the information contained as extra bytes:
.. csv-table:: cBLUE VLR Extra Bytes
:header: id, dtype, description
:widths: 14, 20, 20
total_thu, unsigned short (2 bytes), total horizontal uncertainty
total_tvu, unsigned short (2 bytes), total vertical uncertainty
:param las:
:param data_to_output:
:param output_columns:
:return:
"""
# get input file name and append TPU
out_las_name = os.path.join(self.gui_object.output_directory, las.las_base_name) + "_TPU.las"
# read las file
in_las = laspy.read(las.las)
# if TPU file already exists, overwrite it
if las.las_base_name + "_TPU.las" in os.listdir(self.gui_object.output_directory):
out_las = laspy.read(out_las_name)
logger.tpu(
"writing las and tpu results to existing file: {}".format(out_las_name)
)
# otherwise, create new TPU file
else:
logger.tpu(
"writing las and tpu results to new file: {}".format(out_las_name)
)
out_las = laspy.LasData(in_las.header)
# note '<f4' -> 32 bit floating point
extra_byte_dimensions = {"total_thu": "<f4", "total_tvu": "<f4"}
num_extra_bytes = len(extra_byte_dimensions.keys())
# define new extrabyte dimensions
for dimension, dtype in extra_byte_dimensions.items():
logger.tpu("creating extra byte dimension for {}...".format(dimension))
out_las.add_extra_dim(
laspy.ExtraBytesParams(
name=dimension, type=dtype, description=dimension
)
)
if len(data_to_output) != 0:
tpu_data = np.vstack(data_to_output)
extra_byte_df = pd.DataFrame(
tpu_data[:, 0:num_extra_bytes],
index=tpu_data[:, num_extra_bytes],
columns=extra_byte_dimensions.keys(),
)
if extra_byte_df.shape[0] == las.num_file_points:
extra_byte_df = extra_byte_df.sort_index()
# print(f"extra_byte_df\n-------------")
# print(extra_byte_df)
else:
logger.tpu(
"""
filling data points for which TPU was not calculated
with no_data_value (also sorting by index, or t_idx)
"""
)
no_data_value = -1
extra_byte_df = extra_byte_df.reindex(
las.t_argsort, fill_value=no_data_value
).sort_index()
logger.tpu("populating extra byte data for total_thu...")
out_las.total_thu = extra_byte_df["total_thu"]
logger.tpu("populating extra byte data for total_tvu...")
out_las.total_tvu = extra_byte_df["total_tvu"]
else:
logger.tpu("populating extra byte data for total_thu...")
out_las.total_thu = np.zeros(las.num_file_points)
logger.tpu("populating extra byte data for total_tvu...")
out_las.total_tvu = np.zeros(las.num_file_points)
# copy data from in_las
for field in in_las.point_format:
logger.tpu("writing {} to {} ...".format(field.name, out_las))
# cannot copy over non-standard (extrabyte) dimensions
dim = in_las.point_format.dimension_by_name(field.name)
if dim.is_standard:
las_data = in_las[field.name]
out_las[field.name] = las_data[las.t_argsort]
# write las with extrabytes to file
out_las.write(out_las_name)
if self.gui_object.csv_option:
logger.tpu(f"Saving CSV as {las.las_base_name}_TPU.csv")
# get name of csv from las file
out_csv_name = os.path.join(self.gui_object.output_directory, las.las_base_name) + "_TPU.csv"
csv_las = Las(out_las_name)
#xyz_to_coordinate converts the x, y, z integer values to decimal values
x, y, z = csv_las.xyz_to_coordinate()
# Save relevant data to csv
pd.DataFrame.from_dict(
{
"GPS Time": out_las.gps_time,
"X": x,
"Y": y,
"Z": z,
"THU": out_las.total_thu,
"TVU": out_las.total_tvu,
"Classification": out_las.classification,
}
).to_csv(out_csv_name, index=False)
def write_metadata(self, las):
"""creates a json file with summary statistics and metedata
This method creates a json file containing summary statistics for each
tpu field, per flight line, and a record of the environmental and VDatum
parameters specified by the user. The file also records certain
parameters used during the monte carlo simulations used to create
the lookup tables used in the subaqueous portion of the tpu calculations.
:param las:
:return: n/a
"""
logger.tpu("({}) creating TPU meta data file...".format(las.las_short_name))
self.metadata.update(
{
"subaqueous lookup params": self.subaqu_lookup_params,
"wind": self.gui_object.wind_selection,
"kd": self.gui_object.kd_selection,
"VDatum region": self.gui_object.vdatum_region,
"VDatum region MCU": self.gui_object.mcu,
"flight line stats (min max mean stddev)": self.flight_line_stats,
"sensor model": self.sensor_object.name,
"cBLUE version": self.gui_object.cblue_version,
"Subaqueous processing version": self.gui_object.subaqueous_version,
"cpu_processing_info": self.gui_object.cpu_process_info,
"water_surface_ellipsoid_height": self.gui_object.water_surface_ellipsoid_height,
"Error type": self.gui_object.error_type
}
)
try:
# self.metadata['flight line stats'].update(self.flight_line_stats) # flight line metadata
with open(
os.path.join(self.gui_object.output_directory, "{}.json".format(las.las_base_name)), "w", encoding="utf-8"
) as outfile:
json.dump(self.metadata, outfile, indent=1, ensure_ascii=False)
except Exception as e:
logger.error(e)
print(e)
def run_tpu_multiprocess(self, num_las, sbet_las_generator):
"""runs the tpu calculations using multiprocessing
This methods initiates the tpu calculations using the pathos
multiprocessing framework (https://pypi.org/project/pathos/).
Whether the tpu calculations are done with multiprocessing or not is
currently determined by which "run_tpu_*" method is manually specified
in the tpu_process_callback() method of the CBlueApp class.
TODO: Include user option to select single processing or multiprocessing
:param sbet_las_generator:
:return:
"""
print("Calculating TPU (multi-processing)...")
p = pp.ProcessPool(2)
for _ in tqdm(
p.imap(self.calc_tpu, sbet_las_generator), total=num_las, ascii=True
):
pass
return p
def run_tpu_singleprocess(self, num_las, sbet_las_generator):
"""runs the tpu calculations using a single processing
This methods initiates the tpu calculations using single processing.
Whether the tpu calculations are done with multiprocessing or not is
currently determined by which "run_tpu_*" method is manually specified
the tpu_process_callback() method of the CBlueApp class. TODO: Include
a user option to select single processing or multiprocessing
:param sbet_las_generator:
:return:
"""
print("Calculating TPU (single-processing)...")
with progressbar.ProgressBar(max_value=num_las) as bar:
for i, sbet_las in enumerate(sbet_las_generator):
bar.update(i)
self.calc_tpu(sbet_las)
if __name__ == "__main__":
pass