forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Normalization.cpp
250 lines (212 loc) · 11.1 KB
/
Normalization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <tuple>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_native_batch_norm_legit_native.h>
#include <ATen/ops/_to_dense_native.h>
#include <ATen/ops/empty_native.h>
#include <ATen/ops/native_batch_norm_backward_native.h>
#include <ATen/ops/native_batch_norm_native.h>
#endif
#if !AT_MKLDNN_ENABLED()
namespace at {
namespace native {
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm(
const Tensor& self, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt,
bool train,
double momentum,
double eps) {
TORCH_CHECK(false, "mkldnn_batch_norm: ATen not compiled with MKLDNN support");
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm_backward(
const Tensor& grad_output,
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt, const c10::optional<Tensor>& save_mean_opt, const c10::optional<Tensor>& save_invstd_opt,
bool train,
double eps,
std::array<bool,3> grad_input_mask) {
TORCH_CHECK(false, "mkldnn_batch_norm_backward: ATen not compiled with MKLDNN support");
}
static std::tuple<Tensor, Tensor, Tensor> mkldnn_layer_norm_last_index_weight_bias_f32(
const Tensor& input,
IntArrayRef normalized_shape, const Tensor& weight, const Tensor& bias,
double eps, bool inplace) {
TORCH_CHECK(false, "mkldnn_layer_norm_last_index_weight_bias_f32: ATen not compiled with MKLDNN support");
}
std::tuple<Tensor, Tensor, Tensor> _mkldnn_batch_norm_legit(
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt, Tensor& running_mean, Tensor& running_var,
bool train,
double momentum,
double eps) {
TORCH_CHECK(false, "_mkldnn_batch_norm_legit: ATen not compiled with MKLDNN support");
}
std::tuple<Tensor, Tensor, Tensor> _mkldnn_batch_norm_legit_no_stats(
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt,
bool train,
double momentum,
double eps) {
TORCH_CHECK(false, "_mkldnn_batch_norm_legit_no_stats: ATen not compiled with MKLDNN support");
}
} // namespace native
} // namespace at
#else // AT_MKLDNN_ENABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
#include <ATen/native/layer_norm.h>
#include <ideep/abstract_types.hpp>
namespace at {
namespace native {
std::tuple<Tensor, Tensor, Tensor> mkldnn_layer_norm_last_index_weight_bias_f32(
const Tensor& input,
IntArrayRef normalized_shape, const Tensor& weight, const Tensor& bias,
double eps, bool inplace) {
TORCH_INTERNAL_ASSERT(normalized_shape.size() == 1, "only accept shapes with the last dimension");
TORCH_INTERNAL_ASSERT(input.scalar_type() == at::kFloat);
auto M_N = at::native::_check_layer_norm_inputs(input, normalized_shape, weight, bias);
auto M = M_N.first;
auto mean = empty_mkldnn(
{M},
input.scalar_type(),
input.options().layout_opt(),
input.options().device_opt(),
input.options().pinned_memory_opt());
auto rstd = empty_mkldnn(
{M},
input.scalar_type(),
input.options().layout_opt(),
input.options().device_opt(),
input.options().pinned_memory_opt());
auto mean_it = at::native::itensor_from_mkldnn(mean);
auto rstd_it = at::native::itensor_from_mkldnn(rstd);
auto input_it = at::native::itensor_from_mkldnn(input);
auto weight_it = at::native::itensor_from_mkldnn(weight);
auto bias_it = at::native::itensor_from_mkldnn(bias);
auto out_it = inplace ? input_it : ideep::tensor(input_it.get_desc());
ideep::layer_normalization_forward::compute(input_it, weight_it, bias_it, out_it, mean_it, rstd_it, static_cast<float>(eps));
auto dst = at::native::new_with_itensor_mkldnn(
std::move(out_it),
optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().device_opt());
return std::make_tuple(dst, mean, rstd);
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm(
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt,
bool train,
double momentum,
double eps) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& bias = c10::value_or_else(bias_opt, [] {return Tensor();});
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
if (input.scalar_type() == ScalarType::BFloat16) {
TORCH_CHECK(mkldnn_bf16_device_check(),
"mkldnn_batch_norm: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq");
}
TORCH_CHECK(weight.defined() && bias.defined(),
"mkldnn_batch_norm: currently mkldnn only support affine model");
ideep::tensor& x = itensor_from_mkldnn(input);
ideep::tensor w = itensor_from_tensor(weight);
ideep::tensor b = itensor_from_tensor(bias);
bool use_running_stat = (running_mean.defined() && running_var.defined());
ideep::tensor y;
if (train) {
// TODO: enable 3d batchnorm.
TORCH_CHECK(input.dim() == 4,
"mkldnn_batch_norm: currently mkldnn training only support 2d batchnorm");
ideep::tensor saved_mean;
ideep::tensor saved_var;
ideep::batch_normalization_forward_training::compute(
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x, w, b, y, saved_mean, saved_var, momentum, eps);
if (use_running_stat) {
auto len = x.get_nelems() / w.get_nelems(); // n*h*w
ideep::tensor m = itensor_from_tensor(running_mean);
ideep::tensor v = itensor_from_tensor(running_var);
const std::vector<float> scales_mean{static_cast<float>(1 - momentum),
static_cast<float>(momentum)};
const std::vector<float> scales_var{static_cast<float>(1 - momentum),
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
static_cast<float>(momentum * len / (len - 1))};
ideep::sum::compute(scales_mean, {m, saved_mean}, m);
ideep::sum::compute(scales_var, {v, saved_var}, v);
}
return std::make_tuple(
new_with_itensor_mkldnn(std::move(y), optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().device_opt()),
new_with_itensor_mkldnn(std::move(saved_mean), optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()),
new_with_itensor_mkldnn(std::move(saved_var), optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()));
} else {
TORCH_CHECK(input.dim() == 4 || input.dim() == 5,
"mkldnn_batch_norm: currently mkldnn inference only support 2d and 3d batchnorm");
if (use_running_stat) {
ideep::tensor m = itensor_from_tensor(running_mean);
ideep::tensor v = itensor_from_tensor(running_var);
ideep::batch_normalization_forward_inference::compute(
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x, m, v, w, b, y, eps);
} else {
// TODO: keep running estimates.
TORCH_CHECK(false, "mkldnn_batch_norm: mkldnn inference is not keep running estimates.");
}
return std::make_tuple(
new_with_itensor_mkldnn(std::move(y), optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().device_opt()),
new_with_itensor_mkldnn(ideep::tensor{}, optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()),
new_with_itensor_mkldnn(ideep::tensor{}, optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()));
}
}
std::tuple<Tensor, Tensor, Tensor> _mkldnn_batch_norm_legit(
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt, Tensor& running_mean, Tensor& running_var,
bool train,
double momentum,
double eps) {
return mkldnn_batch_norm(input, weight_opt, bias_opt, running_mean, running_var, train, momentum, eps);
}
std::tuple<Tensor, Tensor, Tensor> _mkldnn_batch_norm_legit_no_stats(
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt,
bool train,
double momentum,
double eps) {
return mkldnn_batch_norm(input, weight_opt, bias_opt, Tensor(), Tensor(), train, momentum, eps);
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm_backward(const Tensor& grad_output,
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt, const c10::optional<Tensor>& save_mean_opt, const c10::optional<Tensor>& save_invstd_opt,
bool train,
double eps,
std::array<bool,3> grad_input_mask) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& save_mean = c10::value_or_else(save_mean_opt, [] {return Tensor();});
const Tensor& save_invstd = c10::value_or_else(save_invstd_opt, [] {return Tensor();});
TORCH_CHECK(train, "mkldnn_batch_norm_backward: currently mkldnn only support train model");
ideep::tensor& grady = itensor_from_mkldnn(grad_output);
ideep::tensor& x = itensor_from_mkldnn(input);
ideep::tensor w = itensor_from_tensor(weight);
ideep::tensor& m = itensor_from_mkldnn(save_mean);
ideep::tensor& v = itensor_from_mkldnn(save_invstd);
ideep::tensor gradx, gradw, gradb;
ideep::batch_normalization_backward::compute(
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x, m, v, grady, w, gradx, gradw, gradb, eps);
return std::make_tuple(
new_with_itensor_mkldnn(std::move(gradx), optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().device_opt()),
mkldnn_to_dense(new_with_itensor_mkldnn(std::move(gradw),
optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt())),
mkldnn_to_dense(new_with_itensor_mkldnn(std::move(gradb),
optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt())));
}
} // namespace native
} // namespace at
#endif // AT_MKLDNN_ENABLED