-
Notifications
You must be signed in to change notification settings - Fork 0
/
example-cpu.py
133 lines (110 loc) · 3.96 KB
/
example-cpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
from pathlib import Path
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
def load(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
print("Creating model...")
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
model = Transformer(model_args)
# Original copyright by tloen
# https://github.com/tloen/llama-int8/blob/main/example.py
key_to_dim = {
"w1": 0,
"w2": -1,
"w3": 0,
"wo": -1,
"wq": 0,
"wk": 0,
"wv": 0,
"output": 0,
"tok_embeddings": -1,
"ffn_norm": None,
"attention_norm": None,
"norm": None,
"rope": None,
}
for i, ckpt in enumerate(checkpoints):
print(f"Loading checkpoint {i}")
checkpoint = torch.load(ckpt, map_location="cpu")
for parameter_name, parameter in model.named_parameters():
short_name = parameter_name.split(".")[-2]
if key_to_dim[short_name] is None and i == 0:
parameter.data = checkpoint[parameter_name]
elif key_to_dim[short_name] == 0:
size = checkpoint[parameter_name].size(0)
parameter.data[size * i: size * (i + 1), :] = checkpoint[
parameter_name
]
elif key_to_dim[short_name] == -1:
size = checkpoint[parameter_name].size(-1)
parameter.data[:, size * i: size * (i + 1)] = checkpoint[
parameter_name
]
del checkpoint[parameter_name]
del checkpoint
model.to("cpu")
generator = LLaMA(model, tokenizer)
print(f"Loaded model in {time.time() - start_time:.2f} seconds")
return generator
def main(
ckpt_dir: str = './model',
tokenizer_path: str = './tokenizer/tokenizer.model',
temperature: float = 0.8,
top_p: float = 0.95,
max_seq_len: int = 512, # up to 2048
max_batch_size: int = 32,
):
# torch.manual_seed(1)
# torch.set_default_dtype(torch.bfloat16)
generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size)
prompts = [
##### For these prompts, the expected answer is the natural continuation of the prompt #####
# "I believe the meaning of life is",
"Simply put, the theory of relativity states that ",
# "Building a website can be done in 10 simple steps:\n",
##### Few shot prompts: https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api #####
# """Tweet: "I hate it when my phone battery dies."
# Sentiment: Negative
# ###
# Tweet: "My day has been 👍"
# Sentiment: Positive
# ###
# Tweet: "This is the link to the article"
# Sentiment: Neutral
# ###
# Tweet: "This new music video was incredibile"
# Sentiment:""",
# """Translate English to French:
# sea otter => loutre de mer
# peppermint => menthe poivrée
# plush girafe => girafe peluche
# cheese =>""",
]
results = generator.generate(
prompts, max_gen_len=256, temperature=temperature, top_p=top_p
)
for result in results:
print(result)
print("\n==================================\n")
if __name__ == "__main__":
fire.Fire(main)