-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
146 lines (127 loc) · 5.31 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class SCNN(nn.Module):
def __init__(
self,
input_size,
ms_ks=9,
pretrained=True
):
"""
Argument
ms_ks: kernel size in message passing conv
"""
super(SCNN, self).__init__()
self.pretrained = pretrained
self.net_init(input_size, ms_ks)
if not pretrained:
self.weight_init()
self.scale_background = 0.4
self.scale_seg = 1.0
self.scale_exist = 0.1
self.ce_loss = nn.CrossEntropyLoss(weight=torch.tensor([self.scale_background, 1, 1, 1, 1]))
self.bce_loss = nn.BCELoss()
def forward(self, img, seg_gt=None, exist_gt=None):
x = self.backbone(img)
x = self.layer1(x)
x = self.message_passing_forward(x)
x = self.layer2(x)
seg_pred = F.interpolate(x, scale_factor=8, mode='bilinear', align_corners=True)
x = self.layer3(x)
x = x.view(-1, self.fc_input_feature)
exist_pred = self.fc(x)
if seg_gt is not None and exist_gt is not None:
loss_seg = self.ce_loss(seg_pred, seg_gt)
loss_exist = self.bce_loss(exist_pred, exist_gt)
loss = loss_seg * self.scale_seg + loss_exist * self.scale_exist
else:
loss_seg = torch.tensor(0, dtype=img.dtype, device=img.device)
loss_exist = torch.tensor(0, dtype=img.dtype, device=img.device)
loss = torch.tensor(0, dtype=img.dtype, device=img.device)
return seg_pred, exist_pred, loss_seg, loss_exist, loss
def message_passing_forward(self, x):
Vertical = [True, True, False, False]
Reverse = [False, True, False, True]
for ms_conv, v, r in zip(self.message_passing, Vertical, Reverse):
x = self.message_passing_once(x, ms_conv, v, r)
return x
def message_passing_once(self, x, conv, vertical=True, reverse=False):
"""
Argument:
----------
x: input tensor
vertical: vertical message passing or horizontal
reverse: False for up-down or left-right, True for down-up or right-left
"""
nB, C, H, W = x.shape
if vertical:
slices = [x[:, :, i:(i + 1), :] for i in range(H)]
dim = 2
else:
slices = [x[:, :, :, i:(i + 1)] for i in range(W)]
dim = 3
if reverse:
slices = slices[::-1]
out = [slices[0]]
for i in range(1, len(slices)):
out.append(slices[i] + F.relu(conv(out[i - 1])))
if reverse:
out = out[::-1]
return torch.cat(out, dim=dim)
def net_init(self, input_size, ms_ks):
input_w, input_h = input_size
self.fc_input_feature = 5 * int(input_w/16) * int(input_h/16)
self.backbone = models.vgg16_bn(pretrained=self.pretrained).features
# ----------------- process backbone -----------------
for i in [34, 37, 40]:
conv = self.backbone._modules[str(i)]
dilated_conv = nn.Conv2d(
conv.in_channels, conv.out_channels, conv.kernel_size, stride=conv.stride,
padding=tuple(p * 2 for p in conv.padding), dilation=2, bias=(conv.bias is not None)
)
dilated_conv.load_state_dict(conv.state_dict())
self.backbone._modules[str(i)] = dilated_conv
self.backbone._modules.pop('33')
self.backbone._modules.pop('43')
# ----------------- SCNN part -----------------
self.layer1 = nn.Sequential(
nn.Conv2d(512, 1024, 3, padding=4, dilation=4, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(),
nn.Conv2d(1024, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU() # (nB, 128, 36, 100)
)
# ----------------- add message passing -----------------
self.message_passing = nn.ModuleList()
self.message_passing.add_module('up_down', nn.Conv2d(128, 128, (1, ms_ks), padding=(0, ms_ks // 2), bias=False))
self.message_passing.add_module('down_up', nn.Conv2d(128, 128, (1, ms_ks), padding=(0, ms_ks // 2), bias=False))
self.message_passing.add_module('left_right',
nn.Conv2d(128, 128, (ms_ks, 1), padding=(ms_ks // 2, 0), bias=False))
self.message_passing.add_module('right_left',
nn.Conv2d(128, 128, (ms_ks, 1), padding=(ms_ks // 2, 0), bias=False))
# (nB, 128, 36, 100)
# ----------------- SCNN part -----------------
self.layer2 = nn.Sequential(
nn.Dropout2d(0.1),
nn.Conv2d(128, 5, 1) # get (nB, 5, 36, 100)
)
self.layer3 = nn.Sequential(
nn.Softmax(dim=1), # (nB, 5, 36, 100)
nn.AvgPool2d(2, 2), # (nB, 5, 18, 50)
)
self.fc = nn.Sequential(
nn.Linear(self.fc_input_feature, 128),
nn.ReLU(),
nn.Linear(128, 4),
nn.Sigmoid()
)
def weight_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.reset_parameters()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data[:] = 1.
m.bias.data.zero_()