-
Notifications
You must be signed in to change notification settings - Fork 0
/
char_rnn_model.py
288 lines (234 loc) · 12.6 KB
/
char_rnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import logging
import time
from enum import Enum
import heapq
import numpy as np
import tensorflow as tf
from rhyme_helper import RhymeWords
logging.getLogger('tensorflow').setLevel(logging.WARNING)
SampleType = Enum('SampleType',('max_prob', 'weighted_sample', 'rhyme','select_given'))
class CharRNNLM(object):
def __init__(self, is_training, batch_size, num_unrollings, vocab_size,w2v_model,
hidden_size, max_grad_norm, embedding_size, num_layers,
learning_rate, cell_type, dropout=0.0, input_dropout=0.0, infer=False):
self.batch_size = batch_size
self.num_unrollings = num_unrollings
if infer:
self.batch_size = 1
self.num_unrollings = 1
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.max_grad_norm = max_grad_norm
self.num_layers = num_layers
self.embedding_size = embedding_size
self.cell_type = cell_type
self.dropout = dropout
self.input_dropout = input_dropout
self.w2v_model = w2v_model
if embedding_size <= 0:
self.input_size = vocab_size
self.input_dropout = 0.0
else:
self.input_size = embedding_size
self.input_data = tf.placeholder(tf.int64, [self.batch_size, self.num_unrollings], name='inputs')
self.targets = tf.placeholder(tf.int64, [self.batch_size, self.num_unrollings], name='targets')
if self.cell_type == 'rnn':
cell_fn = tf.nn.rnn_cell.BasicRNNCell
elif self.cell_type == 'lstm':
cell_fn = tf.nn.rnn_cell.BasicLSTMCell
elif self.cell_type == 'gru':
cell_fn = tf.nn.rnn_cell.GRUCell
params = dict()
#params = {'input_size': self.input_size}
if self.cell_type == 'lstm':
params['forget_bias'] = 1.0 # 1.0 is default value
cell = cell_fn(self.hidden_size, **params)
cells = [cell]
#params['input_size'] = self.hidden_size
for i in range(self.num_layers-1):
higher_layer_cell = cell_fn(self.hidden_size, **params)
cells.append(higher_layer_cell)
if is_training and self.dropout > 0:
cells = [tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=1.0-self.dropout) for cell in cells]
multi_cell = tf.nn.rnn_cell.MultiRNNCell(cells)
with tf.name_scope('initial_state'):
self.zero_state = multi_cell.zero_state(self.batch_size, tf.float32)
if self.cell_type == 'rnn' or self.cell_type == 'gru':
self.initial_state = tuple(
[tf.placeholder(tf.float32,
[self.batch_size, multi_cell.state_size[idx]],
'initial_state_'+str(idx+1)) for idx in range(self.num_layers)])
elif self.cell_type == 'lstm':
self.initial_state = tuple(
[tf.nn.rnn_cell.LSTMStateTuple(
tf.placeholder(tf.float32, [self.batch_size, multi_cell.state_size[idx][0]],
'initial_lstm_state_'+str(idx+1)),
tf.placeholder(tf.float32, [self.batch_size, multi_cell.state_size[idx][1]],
'initial_lstm_state_'+str(idx+1)))
for idx in range(self.num_layers)])
with tf.name_scope('embedding_layer'):
if embedding_size > 0:
# self.embedding = tf.get_variable('embedding', [self.vocab_size, self.embedding_size])
self.embedding = tf.get_variable("word_embeddings",
initializer=self.w2v_model.vectors.astype(np.float32))
else:
self.embedding = tf.constant(np.eye(self.vocab_size), dtype=tf.float32)
inputs = tf.nn.embedding_lookup(self.embedding, self.input_data)
if is_training and self.input_dropout > 0:
inputs = tf.nn.dropout(inputs, 1-self.input_dropout)
with tf.name_scope('slice_inputs'):
# num_unrollings * (batch_size, embedding_size), the format of rnn inputs.
sliced_inputs = [tf.squeeze(input_, [1]) for input_ in tf.split(
axis = 1, num_or_size_splits = self.num_unrollings, value = inputs)]
# sliced_inputs: list of shape xx
# inputs: A length T list of inputs, each a Tensor of shape [batch_size, input_size]
# initial_state: An initial state for the RNN.
# If cell.state_size is an integer, this must be a Tensor of appropriate
# type and shape [batch_size, cell.state_size]
# outputs: a length T list of outputs (one for each input), or a nested tuple of such elements.
# state: the final state
outputs, final_state = tf.nn.static_rnn(
cell = multi_cell,
inputs = sliced_inputs,
initial_state=self.initial_state)
self.final_state = final_state
with tf.name_scope('flatten_outputs'):
flat_outputs = tf.reshape(tf.concat(axis = 1, values = outputs), [-1, hidden_size])
with tf.name_scope('flatten_targets'):
flat_targets = tf.reshape(tf.concat(axis = 1, values = self.targets), [-1])
with tf.variable_scope('softmax') as sm_vs:
softmax_w = tf.get_variable('softmax_w', [hidden_size, vocab_size])
softmax_b = tf.get_variable('softmax_b', [vocab_size])
self.logits = tf.matmul(flat_outputs, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
with tf.name_scope('loss'):
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits = self.logits, labels = flat_targets)
self.mean_loss = tf.reduce_mean(loss)
with tf.name_scope('loss_montor'):
count = tf.Variable(1.0, name='count')
sum_mean_loss = tf.Variable(1.0, name='sum_mean_loss')
self.reset_loss_monitor = tf.group(sum_mean_loss.assign(0.0),
count.assign(0.0), name='reset_loss_monitor')
self.update_loss_monitor = tf.group(sum_mean_loss.assign(sum_mean_loss+self.mean_loss),
count.assign(count+1), name='update_loss_monitor')
with tf.control_dependencies([self.update_loss_monitor]):
self.average_loss = sum_mean_loss / count
self.ppl = tf.exp(self.average_loss)
average_loss_summary = tf.summary.scalar(
name = 'average loss', tensor = self.average_loss)
ppl_summary = tf.summary.scalar(
name = 'perplexity', tensor = self.ppl)
self.summaries = tf.summary.merge(
inputs = [average_loss_summary, ppl_summary], name='loss_monitor')
self.global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0.0))
# self.learning_rate = tf.constant(learning_rate)
self.learning_rate = tf.placeholder(tf.float32, [], name='learning_rate')
if is_training:
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.mean_loss, tvars), self.max_grad_norm)
optimizer = tf.train.AdamOptimizer(self.learning_rate)
self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step)
def run_epoch(self, session, batch_generator, is_training, learning_rate, verbose=0, freq=10):
epoch_size = batch_generator.num_batches
if verbose > 0:
logging.info('epoch_size: %d', epoch_size)
logging.info('data_size: %d', batch_generator.seq_length)
logging.info('num_unrollings: %d', self.num_unrollings)
logging.info('batch_size: %d', self.batch_size)
if is_training:
extra_op = self.train_op
else:
extra_op = tf.no_op()
if self.cell_type in ['rnn', 'gru']:
state = self.zero_state.eval()
else:
state = tuple([(np.zeros((self.batch_size, self.hidden_size)),
np.zeros((self.batch_size, self.hidden_size)))
for _ in range(self.num_layers)])
self.reset_loss_monitor.run()
batch_generator.reset_batch_pointer()
start_time = time.time()
ppl_cumsum = 0
for step in range(epoch_size):
x, y = batch_generator.next_batch()
ops = [self.average_loss, self.ppl, self.final_state, extra_op,
self.summaries, self.global_step]
feed_dict = {self.input_data: x, self.targets: y, self.initial_state: state,
self.learning_rate: learning_rate}
results = session.run(ops, feed_dict)
average_loss, ppl, final_state, _, summary_str, global_step = results
ppl_cumsum += ppl
# if (verbose > 0) and ((step+1) % freq == 0):
if ((step+1) % freq == 0):
logging.info('%.1f%%, step:%d, perplexity: %.3f, speed: %.0f words',
(step + 1) * 1.0 / epoch_size * 100, step, ppl_cumsum/(step+1),
(step + 1) * self.batch_size * self.num_unrollings / (time.time() - start_time))
logging.info("Perplexity: %.3f, speed: %.0f words per sec",
ppl, (step + 1) * self.batch_size * self.num_unrollings / (time.time() - start_time))
return ppl, summary_str, global_step
def sample_seq(self, session, length, start_text, sample_type= SampleType.max_prob,given='',rhyme_ref='',rhyme_idx = 0):
#state = self.zero_state.eval()
if self.cell_type in ['rnn', 'gru']:
state = self.zero_state.eval()
else:
state = tuple([(np.zeros((self.batch_size, self.hidden_size)),
np.zeros((self.batch_size, self.hidden_size)))
for _ in range(self.num_layers)])
# use start_text to warm up the RNN.
start_text = self.check_start(start_text)
if start_text is not None and len(start_text) > 0:
seq = list(start_text)
for char in start_text[:-1]:
x = np.array([[self.w2v_model.vocab_hash[char]]])
state = session.run(self.final_state, {self.input_data: x, self.initial_state: state})
x = np.array([[self.w2v_model.vocab_hash[start_text[-1]]]])
else:
x = np.array([[np.random.randint(0, self.vocab_size)]])
seq = []
for i in range(length):
state, logits = session.run([self.final_state, self.logits],
{self.input_data: x, self.initial_state: state})
unnormalized_probs = np.exp(logits[0] - np.max(logits[0]))
probs = unnormalized_probs / np.sum(unnormalized_probs)
if rhyme_ref and i == rhyme_idx :
sample = self.select_rhyme(rhyme_ref,probs)
elif sample_type == SampleType.max_prob:
sample = np.argmax(probs)
elif sample_type == SampleType.select_given:
sample,given = self.select_by_given(given,probs)
else: #SampleType.weighted_sample
sample = np.random.choice(self.vocab_size, 1, p=probs)[0]
seq.append(self.w2v_model.vocab[sample])
x = np.array([[sample]])
return ''.join(seq)
def select_by_given(self,given,probs,max_prob = False):
if given:
seq_probs = zip(probs,range(0,self.vocab_size))
topn = heapq.nlargest(100,seq_probs,key=lambda sp :sp[0])
for _,seq in topn:
if self.w2v_model.vocab[seq] in given:
given = given.replace(self.w2v_model.vocab[seq],'')
return seq,given
if max_prob:
return np.argmax(probs),given
return np.random.choice(self.vocab_size, 1, p=probs)[0],given
def select_rhyme(self,rhyme_ref,probs):
if rhyme_ref:
rhyme_set = RhymeWords.get_rhyme_words(rhyme_ref)
if rhyme_set:
seq_probs = zip(probs,range(0,self.vocab_size))
topn = heapq.nlargest(50,seq_probs,key=lambda sp :sp[0])
for _,seq in topn:
if self.w2v_model.vocab[seq] in rhyme_set:
return seq
return np.argmax(probs)
def check_start(self,text):
idx = text.find('<')
if idx > -1:
text = text[:idx]
valid_text = []
for w in text:
if w in self.w2v_model.vocab:
valid_text.append(w)
return ''.join(valid_text)